日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$滿足|$\overrightarrow{a}$|=1,$\overrightarrow{a}$⊥$\overrightarrow{b}$,則向量2$\overrightarrow{b}$-$\overrightarrow{a}$在向量$\overrightarrow{a}$方向上的投影為(  )
A.1B.$\frac{\sqrt{7}}{7}$C.-1D.-$\frac{\sqrt{7}}{7}$

分析 根據平面向量投影的定義,計算對應的投影即可.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$滿足|$\overrightarrow{a}$|=1,$\overrightarrow{a}$⊥$\overrightarrow{b}$,∴$\overrightarrow{a}$•$\overrightarrow{b}$=0,
∴向量2$\overrightarrow{b}$-$\overrightarrow{a}$在向量$\overrightarrow{a}$方向上的投影為
|2$\overrightarrow{b}$-$\overrightarrow{a}$|cosθ=$\frac{(2\overrightarrow{b}-\overrightarrow{a})•\overrightarrow{a}}{|\overrightarrow{a}|}$
=$\frac{2\overrightarrow{a}•\overrightarrow{b}{-\overrightarrow{a}}^{2}}{|\overrightarrow{a}|}$
=$\frac{0{-1}^{2}}{1}$
=-1.
故選:C.

點評 本題考查了平面向量投影的定義與計算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

13.給出下列說法:
(1)命題“若a、b都是奇數,則a+b是偶數”的否命題是“若a、b都不是奇數,則a+b不是偶數”;
(2)命題“如果A∩B=A,那么A∪B=B”是真命題;
(3)“x≠1或y≠2”是“x+y≠3”的必要不充分條件.
那么其中正確的說法有(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.若雙曲線$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{m}$=1的離心率為2,則m=24.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.近年來我國電子商務行業迎來發展的新機遇.2016年雙十一期間,某購物平臺的銷售業績高達516億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系.現從評價系統中選出200次成功交易,并對其評價進行統計,對商品的好評率為0.7,對服務的好評率為0.8,其中對商品和服務都做出好評的交易為120次.
(Ⅰ)先完成關于商品和服務評價的2×2列聯表,再判斷能否在犯錯誤的概率不超過0.005的前提下,認為商品好評與服務好評有關?
(Ⅱ)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全好評的次數為隨機變量X:
①求對商品和服務全好評的次數X的分布列;
②求X的數學期望和方差.
附臨界值表:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的觀測值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
關于商品和服務評價的2×2列聯表:
對服務好評對服務不滿意合計
對商品好評a=120b=40160
對商品不滿意c=20d=2040
合計14060n=200

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(sinωx,0)(ω>0),且函數f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$在[-$\frac{π}{6}$,0]上的最小值為$-\sqrt{3}$,將函數f(x)的圖象上所有的點向右平移φ(0<φ<$\frac{π}{2}$)個單位后,得到的函數g(x)的圖象,且已知函數g(x)的圖形關于直線x=$\frac{7π}{12}$對稱.
(1)求函數g(x)的解析式;
(2)在△ABC中,a,b,c分別為∠A,∠B,∠C對應的邊,若函數g(A)=0,a=5,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.設函數f(x)=x+sinx,則不等式$\frac{f(lnx)-f(ln\frac{1}{x})}{2}$<f(1)的解集是(0,e).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知過定點P(-4,0)的直線l與曲線y=$\sqrt{4-{x}^{2}}$相交于A,B兩點,O為坐標原點,當△AOB的面積最大時,直線l的斜率為(  )
A.$\frac{\sqrt{2}}{4}$B.2C.$\frac{\sqrt{7}}{7}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.在直角坐標系xOy中,曲線C1的參數方程為$\left\{\begin{array}{l}x=\frac{3}{2}cosα\\ y=sinα\end{array}\right.$(α為參數),M為C1上的動點,P點滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,點P的軌跡為曲線C2
(Ⅰ)求C2的普通方程;
(Ⅱ) 設點(x,y)在曲線C2上,求x+2y的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),點M,N,F分別為橢圓C的左頂點、上頂點、左焦點,若∠MFN=∠NMF+90°,則橢圓C的離心率是(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美精品一区二区三区四区 | 亚洲日本天堂 | 欧美日韩精品久久久免费观看 | 美女无遮挡网站 | 午夜在线视频 | 欧美爱爱网站 | 成人视屏在线观看 | www一级片| 精品一区av| 在线观看国产免费视频 | 日韩在线观看 | 成人av在线网站 | 破处视频在线观看 | 一级片免费 | 日韩中文字幕 | 日本在线免费 | 久久精品欧美一区 | 国产一区二区三区在线看 | 国产一区二区三区久久 | 久久久久国产一区二区三区 | 中文文字幕文字幕高清 | 国内自拍偷拍 | 久久精品视频一区 | 国产欧美视频在线观看 | 亚洲天堂色图 | 97久久久久| 欧美精品在线视频 | 黄色一级网站 | 一级毛片大全 | 欧美日韩在线免费观看 | 日韩国产欧美 | 日韩色在线| 一二三四区在线观看 | 国产精品久久久999 成人在线国产 | 天天躁日日躁狠狠躁 | 日韩久久一区 | 成人91视频 | 久久综合久久鬼 | 久久精品国产成人av | www.久草| 亚洲综合视频在线观看 |