日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】設函數(a,bR)的導函數為,已知的兩個不同的零點.

(1)證明:

(2)當b=0時,若對任意x>0,不等式恒成立,求a的取值范圍;

(3)求關于x的方程的實根的個數.

【答案】(1)見解析;(2);(3)1個.

【解析】

(1)求函數的導數,利用△=4a2﹣12b>0,得證;

(2)分離參數a,所以a≥﹣x對任意x>0恒成立,令新函數設g(x)=﹣x求最值即可,或采用x3+ax2﹣xlnx≥0時求左側最值亦可.

(3)轉化函數求零點個數可得結論.

(1)函數f(x)=x3+ax2+bx(a,b∈R)的導函數為f′(x)=3x2+2ax+b.

已知x1,x2是f'(x)的兩個不同的零點,設x1<x2

所以△=4a2﹣12b>0,所以:a2>3b得證;

(2)當b=0時,對任意x>0,f(x)≥xlnx恒成立,

所以x3+ax2≥xlnx,即x3+ax2﹣xlnx≥0,x2+ax﹣lnx≥0對任意x>0恒成立,

所以a≥﹣x對任意x>0恒成立,

設g(x)=﹣x,則

令h(x)=1﹣1nx﹣x2,則h(x)=﹣﹣2x<0,

所以h(x)在(0,+∞)上單調遞減,注意到h(1)=0,

當x∈(0,1)時,h(x)>0,g(x)>0,所以g(x)在(0,1)上單調遞增,

當x∈(1,+∞)時,H(x)<0,g(x)<0,所以g(x)在(1,+∞)上單調遞減,

所以,當x=1時,g(x)有最大值g(1)=﹣1,

所以a的取值范圍為[﹣1,+∞);

(3)由題意設F(x)=f(x)﹣f(x1)﹣

則原問題轉化為求函數F(x)的零點的個數,

因為導函數為f(x)=3x2+2ax+b,已知x1,x2是f'(x)的兩個不同的零點,

所以:,所以:

所以F(x)在(0,+∞)上單調遞增,注意到F(x1)=0,所以F(x)在(0,+∞)上存在唯一零點x1

∴關于x的方程有1個實根,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知某商品每件的生產成本(元)與銷售價格(元)具有線性相關關系,對應數據如表所示:

(元)

5

6

7

8

(元)

15

17

21

27

(1)求出關于的線性回歸方程

(2)若該商品的月銷售量(千件)與生產成本(元)的關系為,根據(1)中求出的線性回歸方程,預測當為何值時,該商品的月銷售額最大.

附:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓是長軸的一個端點,弦過橢圓的中心,點在第一象限,且

(1)求橢圓的標準方程;

(2)設為橢圓上不重合的兩點且異于,若的平分線總是垂直于軸,問是否存在實數,使得?若不存在,請說明理由;若存在,求取得最大值時的的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于兩點,是坐標原點.

(1)若直線過點,求直線的方程;

(2)已知點,若直線不與坐標軸垂直,且,證明:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設直線l不經過P2點且與C相交于AB兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知F是拋物線C:的焦點,過E(﹣l,0)的直線與拋物線分別交于A,B兩點(點A,B在x軸的上方).

(1)設直線AF,BF的斜率分別為,證明:

(2)若ABF的面積為4,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數學、英語,為必考科目:“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取名學生進行調查.

(1)已知抽取的名學生中含男生110人,求的值及抽取到的女生人數;

(2)學校計劃在高二上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生講行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據調查結果得到的列聯表,請將列聯表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;

性別

選擇物理

選擇歷史

總計

男生

50

女生

30

總計

(3)在(2)的條件下,從抽取的選擇“物理”的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

參考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某隧道的剖面圖是由半圓及矩形組成,交通部門擬在隧道頂部安裝通風設備(視作點),為了固定該設備,計劃除從隧道最高點處使用鋼管垂直向下吊裝以外,再在兩側自兩點分別使用鋼管支撐.已知道路寬,設備要求安裝在半圓內部,所使用的鋼管總長度為.

(1)①設,將表示為關于的函數;

②設,將表示為關于的函數;

(2)請選用(1)中的一個函數關系式,說明如何設計,所用的鋼管材料最省?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的一個頂點為拋物線的頂點 兩點都在拋物線上,且.

(1)求證:直線必過一定點;

(2)求證: 面積的最小值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 伊人99 | 精品自拍网 | 五月婷婷之激情 | 亚洲国产一区二区三区, | 成人免费视频观看视频 | 欧美日韩中文 | 色噜噜狠狠狠综合曰曰曰 | 国产aⅴ | 九九热在线免费视频 | 久久亚洲成人av | 精品一区二区免费视频 | 国产依人在线 | 亚洲第一成年免费网站 | 蜜臀久久99精品久久久久久宅男 | 久久久成人精品 | 亚洲精品美女在线观看 | 91精品国产自产91精品 | 久久99国产精品久久99大师 | 午夜精品久久久久99蜜 | 亚洲美女在线视频 | 在线第一页 | 亚洲精品视频免费 | 亚洲国产精华液网站w | 久草久草久草 | 国产一区二区精品在线观看 | 国产精品美女久久久久久久久久久 | 国产精品中文字母 | 国产激情毛片 | 欧美日韩高清免费 | 成人黄色免费在线视频 | 欧美精品影院 | 一级片在线观看 | 精品亚洲一区二区三区四区五区 | 国产亚洲一区二区不卡 | 8×8x拔擦拔擦在线视频网站 | 日本精品久久久久久久 | 免费国产在线视频 | 综合一区在线观看 | 欧美日一区二区 | 日本二区| 国产成人免费视频网站视频社区 |