【題目】設(shè)有下列四個(gè)命題:
:若
,則
;
:若
,則
;
:“
”是“
為奇函數(shù)”的充要條件;
:“等比數(shù)列
中,
”是“等比數(shù)列
是遞減數(shù)列”的充要條件.
其中,真命題的是
A. ,
B.
,
C.
,
D.
,
【答案】C
【解析】
根據(jù)不等式的性質(zhì),結(jié)合函數(shù)奇偶性的性質(zhì),等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義分別進(jìn)行點(diǎn)評即可.
:當(dāng)
,
時(shí),滿足
,則
;不成立,即命題
是假命題
:設(shè)
,則
,即
是減函數(shù),
若,
,即
,則
成立,即命題
是真命題;
若,則
,即
,函數(shù)
是奇函數(shù),
當(dāng),滿足
是奇函數(shù),但
不成立,即“
”是“
為奇函數(shù)”的充要條件錯(cuò)誤;即命題
是假命題,
:“等比數(shù)列
中,
”,則
,若
,則
,
得,此時(shí)
,即
,數(shù)列為遞減數(shù)列,
,則
,
則,此時(shí)
,即
,數(shù)列為遞減數(shù)列,綜上等比數(shù)列
是遞減數(shù)列,
若等比數(shù)列是遞減數(shù)列,則
成立,
即等比數(shù)列中,
”是“等比數(shù)列
是遞減數(shù)列”的充要條件,故命題
是真命題;
故真命題是,
,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程
.
(Ⅰ)若是從
四個(gè)數(shù)中任取的一個(gè)數(shù),
是從
三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(Ⅱ)若是從區(qū)間
任取的一個(gè)數(shù),
是從區(qū)間
任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,A是橢圓短軸的一個(gè)端點(diǎn),直線AF與橢圓另一交點(diǎn)為B,且
.
(1)求橢圓方程;
(2)若斜率為1的直線l交橢圓于C,D,且CD為底邊的等腰三角形的頂點(diǎn)為,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的曲線的方程:
(1)離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程
(2)與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn)
的雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,
,
,
是線段
上一點(diǎn)且滿足
,
是線段
上一動點(diǎn),把
沿
折起得到
,使得平面
平面
,分別記
,
與平面
所成角為
,
,平面
與平面
所成銳角為
,則:( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列前5項(xiàng)和為50,
,數(shù)列
的前
項(xiàng)和為
,
,
.
(Ⅰ)求數(shù)列,
的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
,曲線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線交于點(diǎn)
,曲線
與
軸交于點(diǎn)
,求線段
的中點(diǎn)到點(diǎn)
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了分析某個(gè)高三學(xué)生的學(xué)習(xí)狀態(tài).現(xiàn)對他前5次考試的數(shù)學(xué)成績x,物理成績y進(jìn)行分析.下面是該生前5次考試的成績.
數(shù)學(xué) | 120 | 118 | 116 | 122 | 124 |
物理 | 79 | 79 | 77 | 82 | 83 |
附.
.
已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,求物理成績y與數(shù)學(xué)成績x的回歸直線方程;
我們常用
來刻畫回歸的效果,其中
越接近于1,表示回歸效果越好.求
.
已知第6次考試該生的數(shù)學(xué)成績達(dá)到132,請你估計(jì)第6次考試他的物理成績大約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
為曲線
上的動點(diǎn),點(diǎn)
在射線
上,且滿足
.
(Ⅰ)求點(diǎn)的軌跡
的直角坐標(biāo)方程;
(Ⅱ)設(shè)與
軸交于點(diǎn)
,過點(diǎn)
且傾斜角為
的直線
與
相交于
兩點(diǎn),求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com