【題目】語音交互是人工智能的方向之一,現在市場上流行多種可實現語音交互的智能音箱,它們可以通過語音交互滿足人們的部分需求.經市場調查,某種新型智能音箱的廣告費支出x(萬元)與銷售額y(單位:萬元)之間有如下對應數據:
x | 1 | 4 | 5 | 6 | 9 |
y | 20 | 35 | 50 | 65 | 80 |
(1)求y關于x的線性回歸方程(數據精確到0.01);
(2)利用(1)中的回歸方程,預測廣告費支出10萬元時的銷售額.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,
.
科目:高中數學 來源: 題型:
【題目】(本小題滿分13分)設數列的前
項和為
.已知
,
,
.
(1)寫出的值,并求數列
的通項公式;
(2)記為數列
的前
項和,求
;
(3)若數列滿足
,
,求數列
的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,圓的參數方程為
(
為參數),以原點為極點,以
軸為非負半軸為極軸建立極坐標系.
(1)求圓的普通方程與極坐標方程;
(2)若直線的極坐標方程為
,求圓
上的點到直線
的最大距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了如圖所示的折線圖.
根據該折線圖,下列結論錯誤的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有6個完全相同的小球,分別標號為1,2,3,4,5,6.
(1)一次取出兩個小球,求其號碼之和能被3整除的概率;
(2)有放回的取球兩次,每次取一個,求兩個小球號碼是相鄰整數的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某林業部門為了保證植樹造林的樹苗質量,對甲、乙兩家供應的樹苗進行根部直徑檢測,現從兩家供應的樹苗中各隨機抽取10株樹苗檢測,測得根部直徑如下(單位:mm):
甲 | 27 | 11 | 21 | 10 | 19 | 09 | 22 | 13 | 15 | 23 |
乙 | 15 | 20 | 27 | 17 | 21 | 14 | 16 | 18 | 24 | 18 |
(1)畫出甲、乙兩家抽取的10株樹苗根部直徑的莖葉圖,并根據莖葉圖對甲、乙兩家樹苗進行比較,寫出兩個統計結論;
(2)設抽測的10株乙家樹苗根部直徑的平均值為,將這10株樹苗直徑依次輸入程序框圖中,求輸出的S的值,并說明其統計學的意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合.若曲線
的參數方程為
(
為參數),直線
的極坐標方程為
.
(1)將曲線的參數方程化為極坐標方程;
(2)由直線上一點向曲線
引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產至今已有1300多年的歷史,制作工藝十分復雜,它的制作過程必須先后經過兩次燒制,當第一次燒制合格后方可進入第二次燒制,兩次燒制過程相互獨立。某陶瓷廠準備仿制甲、乙、丙三件不同的唐三彩工藝品,根據該廠全面治污后的技術水平,經過第一次燒制后,甲、乙、丙三件工藝品合格的概率依次為,
,
,經過第二次燒制后,甲、乙、丙三件工藝品合格的概率依次為
,
,
.
(1)求第一次燒制后甲、乙、丙三件中恰有一件工藝品合格的概率;
(2)經過前后兩次燒制后,甲、乙、丙三件工藝品成為合格工藝品的件數為,求隨機變量
的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC—A1B1C1中,側面AA1B1B是正方形,AC丄側面AA1B1B,AC=AB,點E是B1C1的中點.
(Ⅰ)求證:C1A∥平面EBA1;
(Ⅱ)若EF丄BC1,垂足為F,求二面角B—AF—A1的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com