已知橢圓的左右焦點分別是
,離心率
,
為橢圓上任一點,且
的最大面積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設斜率為的直線
交橢圓
于
兩點,且以
為直徑的圓恒過原點
,若實數
滿足條件
,求
的最大值.
(Ⅰ)橢圓的方程
;(Ⅱ)
的最大值為
.
解析試題分析:(Ⅰ)依題意得:,這是一個關于
的方程組,解這個方程組便可得
的值,從而得橢圓
的方程.
(Ⅱ)設,由于以
為直徑的圓恒過原點
,所以
,即
……………………………………………………①
設直線的方程
,聯立方程組
,再由根與系數的關系可得:
、
,代入①便得一個含
的等式.
將變形化簡得:
.
因此,要求的最大值,只需求
的最大值,而
可以用含
的式子表示出來,再利用前面含
的等式換掉一個變量,得一個只含一個變量的式子,再利用求函數最值的方法,便可求出其最大值.
試題解析:(Ⅰ)依題意得:,解得:
,
于是:橢圓的方程
,
(Ⅱ)設直線的方程
由
得:
,
設,則
.
由于以為直徑的圓恒過原點
,于是
,即
,
又,
于是:,即
依題意有:,即
.
化簡得:.
因此,要求的最大值,只需求
的最大值,下面開始求
的最大值:
.
點到直線
的距離
,于是:
.
又因為,所以
,
代入得.
令,
于是:.
當即
,即
時,
取最大值,且最大值為
.
于是:的最大值為
.
考點:1、橢圓的方程;2、直線與圓錐曲線;3、函數的最值.
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切,過點P(4,0)且不垂直于x軸直線
與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求的取值范圍;
(3)若B點關于x軸的對稱點是E,證明:直線AE與x軸相交于定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖示:已知拋物線的焦點為
,過點
作直線
交拋物線
于
、
兩點,經過
、
兩點分別作拋物線
的切線
、
,切線
與
相交于點
.
(1)當點在第二象限,且到準線距離為
時,求
;
(2)證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知圓
和圓
.
(1)若直線過點
,且被圓
截得的弦長為
,求直線
的方程;
(2)設為平面上的點,滿足:存在過點
的無窮多對互相垂直的直線
和
,它們分別與圓
和圓
相交,且直線
被圓
截得的弦長與直線
被圓
截得的弦長相等,試求所有滿足條件的點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設雙曲線以橢圓
的兩個焦點為焦點,且雙曲線
的一條漸近線是
,
(1)求雙曲線的方程;
(2)若直線與雙曲線
交于不同兩點
,且
都在以
為圓心的圓上,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點為F2,點F1與F2關于坐標原點對稱,以F1,F2為焦點的橢圓C過點
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設點,過點F2作直線
與橢圓C交于A,B兩點,且
,若
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點為,焦點在
軸上,若右焦點到直線
的距離為3.
(1)求橢圓的標準方程;
(2)設直線與橢圓相交于不同的兩點
、
,當
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知經過點A(-4,0)的動直線l與拋物線G:相交于B、C,當直線l的斜率是
時,
.
(Ⅰ)求拋物線G的方程;
(Ⅱ)設線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,
、
分別是橢圓
的頂點,過坐標原點的直線交橢圓于
、
兩點,其中
在第一象限.過
作
軸的垂線,垂足為
.連接
,并延長交橢圓于點
.設直線
的斜率為
.
(Ⅰ)當直線平分線段
時,求
的值;
(Ⅱ)當時,求點
到直線
的距離;
(Ⅲ)對任意,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com