在平面直角坐標系中,已知圓
和圓
.
(1)若直線過點
,且被圓
截得的弦長為
,求直線
的方程;
(2)設為平面上的點,滿足:存在過點
的無窮多對互相垂直的直線
和
,它們分別與圓
和圓
相交,且直線
被圓
截得的弦長與直線
被圓
截得的弦長相等,試求所有滿足條件的點
的坐標.
(1)或
;(2)
.
解析試題分析:(1)涉及到圓的弦長問題,我們一般利用弦心距,弦的一半,相應半徑所構成的直角三角形,本題中由弦長為,半徑為2,可求得弦心距為1,此即為圓心到直線的距離,利用點到直線的距離公式,可求得斜率
.利用方程思想求
時要注意直線斜率不存在即直線與
軸垂直的情形.否則可能漏.(2)由(1)的分析可知直線
被圓
截得的弦長與直線
被圓
截得的弦長相等可得圓心
到直線
的距離與圓心
到直線
距離相等,所以我們可設
點坐標為
,直線
的方程分別為
,
,利用圓心
到直線
的距離與圓心
到直線
距離相等列出關于
的方程,再轉化為關于
的方程有無窮解問題,從而得解.
試題解析:(1)設直線的方程為
,即
由垂徑定理得圓心到直線
的距離
結合點到直線的距離公式得
所求直線的方程為
或
,即
或
(2)設點,直線
的方程分別為
即
由題意可知圓心到直線
的距離等于
到直線
的距離
即,化簡得
,關于
的方程由無窮多解,則有
,故
.
考點:(1)點到直線距離公式;(2)方程解的個數問題.
科目:高中數學 來源: 題型:解答題
已知橢圓的中心為直角坐標系
的原點,焦點在
軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓
的動點,
為過
且垂直于
軸的直線上的點,
(
為橢圓的離心率),求點
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A(-5,0),B(5,0),動點P滿足||,
|
|,8成等差數列.
(1)求P點的軌跡方程;
(2)對于x軸上的點M,若滿足||·|
|=
,則稱點M為點P對應的“比例點”.問:對任意一個確定的點P,它總能對應幾個“比例點”?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點的雙曲線的一個焦點是
,一條漸近線的方程是
。
(1)求雙曲線的方程;
(2)若以為斜率的直線
與雙曲線
相交于兩個不同的點
,且線段
的垂直平分線與兩坐標軸圍成的三角形的面積為
,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在軸上方有一段曲線弧
,其端點
、
在
軸上(但不屬于
),對
上任一點
及點
,
,滿足:
.直線
,
分別交直線
于
,
兩點.
(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用
表示);
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左右焦點分別是
,離心率
,
為橢圓上任一點,且
的最大面積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設斜率為的直線
交橢圓
于
兩點,且以
為直徑的圓恒過原點
,若實數
滿足條件
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓過點
,離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為
(
)的直線
與橢圓
相交于
兩點,直線
、
分別交直線
于
、
兩點,線段
的中點為
.記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,焦距為
,且經過點
,直線
交橢圓于不同的兩點A,B.
(1)求的取值范圍;,
(2)若直線不經過點
,求證:直線
的斜率互為相反數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com