日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
12.矩陣A=$[\begin{array}{l}{a}&{k}\\{0}&{1}\end{array}]$(k≠0)的一個特征向量為$\overrightarrow{a}$=$[\begin{array}{l}k\\-1\end{array}]$,A的逆矩陣A-1對應的變換將點(3,1)變為點(1,1).則a+k=3.

分析 由$[\begin{array}{l}{a}&{k}\\{0}&{1}\end{array}]$$[\begin{array}{l}k\\-1\end{array}]$=λ$[\begin{array}{l}k\\-1\end{array}]$,即$\left\{\begin{array}{l}{ak-k=kλ}\\{-1=-λ}\end{array}\right.$,由k≠0,解得:$\left\{\begin{array}{l}{λ=1}\\{a=2}\end{array}\right.$,根據矩陣的運算性質可知:A$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,$[\begin{array}{l}{2}&{k}\\{0}&{1}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,即可求得k的值,求得a+k的值.

解答 解:設特征向量為$\overrightarrow{a}$=$[\begin{array}{l}k\\-1\end{array}]$,對應的特征值為λ,λ,
則$[\begin{array}{l}{a}&{k}\\{0}&{1}\end{array}]$$[\begin{array}{l}k\\-1\end{array}]$=λ$[\begin{array}{l}k\\-1\end{array}]$,即$\left\{\begin{array}{l}{ak-k=kλ}\\{-1=-λ}\end{array}\right.$,
由k≠0,解得:$\left\{\begin{array}{l}{λ=1}\\{a=2}\end{array}\right.$,
由A-1$[\begin{array}{l}{3}\\{1}\end{array}]$=$[\begin{array}{l}{1}\\{1}\end{array}]$,即A$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,
$[\begin{array}{l}{2}&{k}\\{0}&{1}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,即$\left\{\begin{array}{l}{2+k=3}\\{1=1}\end{array}\right.$,解得:k=1,
∴a+k=2+1=3,
故答案為:3.

點評 本題考查矩陣的運算,考查矩陣的特征值與特征向量的計算,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

20.設y3+3x2y+x=1確定y是x的函數,求y′及y′|x=0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知中心在原點,焦點在x軸上的橢圓C的離心率為$\frac{1}{2}$,其一個頂點為拋物線x2=-4$\sqrt{3}$y的焦點.
(1)求橢圓C的標準方程;
(2)若過點P(2,1)的直線l與橢圓C在第一象限相切于點M,求直線l的方程和點M的坐標;
(3)是否存在過點P(2,1)的直線l1與橢圓C相交于不同的兩點A,B,且滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=${\overrightarrow{PM}^2}$?若存在,求出直線l1的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知一個橢圓的焦點在x軸上、離心率為$\frac{{\sqrt{3}}}{2}$,右焦點到右準線($x=\frac{a^2}{c}$)的距離為$\frac{{\sqrt{3}}}{3}$.
(1)求橢圓的標準方程;
(2)一條直線經過橢圓的一個焦點且斜率為1,求直線與橢圓的兩個交點之間的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD是等邊三角形,底面ABCD是邊長為2的菱形,∠BAD=60°,E是AD的中點,F是PC的中點.
(1)求證:EF∥平面PAB;
(2)求直線EF與平面PBE所成角的余弦值.
(3)求平面PAD與平面PBC的二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.設函數y=f(x)的定義域為D,值域為A,如果存在函數x=g(t),使得函數y=f[g(t)]的值域仍是A,那么稱x=g(t)是函數y=f(x)的一個等值域變換.設f(x)=log2x的定義域為[2,8],已知x=g(t)=$\frac{{m{t^2}-nt+m}}{{{t^2}+1}}({m∈R,n∈{R_+}})$是y=f(x)的一個等值變換,且函數y=f[g(t)]的定義域為R,則m=5,n=6.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.壇子里放著5個相同大小,相同形狀的咸鴨蛋,其中有3個是綠皮的,2個是白皮的.如果不放回地依次拿出2個鴨蛋,求:
(1)第一次拿出綠皮鴨蛋的概率;
(2)第1次和第2次都拿到綠皮鴨蛋的概率;
(3)在第1次拿出綠皮鴨蛋的條件下,第2次拿出綠皮鴨蛋的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=$\frac{1}{2}$x2-5x+4lnx.
(1)求函數f(x)的定義域并求函數f(x)的單調區間;
(2)求函數f(x)的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.函數f(x)=$\frac{a+lnx}{x}$,若曲線f(x)在點(e,f(e))處的切線與直線e2x-y+e=0垂直(其中e為自然對數的底數).
(1)求f(x)的單調區間和極值.
(2)求證:當x>1時,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 天天爽天天草 | 一区欧美 | 日本三级视频在线观看 | 国产精品美女久久久久aⅴ国产馆 | 午夜剧场黄 | 一区二区视频网站 | 一级毛片免费看 | 亚洲一区二区三区免费在线观看 | 中文 日韩 欧美 | 国产精品久久久久蜜臀 | 国产精品美女在线观看直播 | 欧美视频免费看 | 欧美一区二区免费 | 玖玖操 | 亚洲人成网亚洲欧洲无码 | 亚洲精品做爰大胆视频在线 | 久热伊人| 九九热这里 | 黄色影视在线观看 | 国产午夜精品美女视频明星a级 | 欧美成人伊人 | 99久久99| 成人av免费观看 | 色综合久 | 色综合国产 | 日韩精品一区二区在线观看 | 国产视频中文字幕 | 天天网 | 中文字幕在线日韩 | 久久久久久久国产 | 欧美激情久久久 | 欧美在线| 超碰美女 | 免费的黄色毛片 | 狠狠艹视频 | 四虎成人精品永久免费av九九 | av在线一区二区 | 国产日韩中文字幕 | 99视频在线 | 国产99久久精品 | 青青草中文字幕 |