【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若,試判斷
的零點個數(shù).
【答案】(1)當(dāng)時,
在
上是增函數(shù),
當(dāng),
在
上是增函數(shù),在
上是減函數(shù),在
上是增函數(shù),
當(dāng)時,
在
上是增函數(shù),在
上是減函數(shù),在
上是增函數(shù);
(2)1
【解析】
(1)對求導(dǎo)后對
進行分類討論,找到
和
的區(qū)間,即為
的單調(diào)區(qū)間.
(2)由(1)可知時,
有極大值
和極小值
,研究他們的正負,并且找到令
的點,根據(jù)零點存在定理,找出零點個數(shù).
(1)函數(shù)的定義域為
,
,令
,則
,
,
(i)若,則
恒成立,所以
在
上是增函數(shù),
(ii)若,則
,
當(dāng)時,
,
是增函數(shù),
當(dāng)時,
,
是減函數(shù),
當(dāng)時,
,
是增函數(shù),
(iii)若,則
,
當(dāng)時,
,
是增函數(shù),
當(dāng)時,
,
是減函數(shù),
當(dāng)時,
,
是增函數(shù),
綜上所述:當(dāng)時,
在
上是增函數(shù),
當(dāng),
在
上是增函數(shù),在
上是減函數(shù),在
上是增函數(shù),
當(dāng)時,
在
上是增函數(shù),在
上是減函數(shù),在
上是增函數(shù);
(2)當(dāng)時,
在
上是增函數(shù),在
上是減函數(shù),在
上是增函數(shù),
所以的極小值為
,
的極大值為
,
設(shè),其中
,
,
所以在
上是增函數(shù),
所以,
因為,
所以有且僅有1個,使
.
所以當(dāng)時,
有且僅有1個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南北朝時期的數(shù)學(xué)家祖暅提出了計算體積的祖暅原理:“冪勢既同,則積不容異。”意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.已知曲線,直線
為曲線
在點
處的切線.如圖所示,陰影部分為曲線
、直線
以及
軸所圍成的平面圖形,記該平面圖形繞
軸旋轉(zhuǎn)一周所得的幾何體為
.給出以下四個幾何體:
① ② ③ ④
圖①是底面直徑和高均為的圓錐;
圖②是將底面直徑和高均為的圓柱挖掉一個與圓柱同底等高的倒置圓錐得到的幾何體;
圖③是底面邊長和高均為的正四棱錐;
圖④是將上底面直徑為,下底面直徑為
,高為
的圓臺挖掉一個底面直徑為
,高為
的倒置圓錐得到的幾何體.
根據(jù)祖暅原理,以上四個幾何體中與的體積相等的是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的高二(1)班男同學(xué)名,女同學(xué)
名,老師按照分層抽樣的方法組建了一個
人的課外興趣小組.
(1)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(2)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項實驗,方法是先從小組里選出名同學(xué)做實驗,該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選
名同學(xué)做實驗,求選出的兩名同學(xué)中恰有
名女同學(xué)的概率;
(3)實驗結(jié)束后,第一次做實驗的同學(xué)得到的實驗數(shù)據(jù)為,第二次做實驗的同學(xué)得到的實驗數(shù)據(jù)為
,請問哪位同學(xué)的實驗更穩(wěn)定?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的有________(填序號)
①已知或
,
,則p是q的充分不必要條件;
②“函數(shù)的最小正周期為
”是“
”的必要不充分條件;
③中,內(nèi)角A,B,C所對的邊分別為a,b,c,
,
,則“
”是“
為等腰三角形”的必要不充分條件;
④若命題“函數(shù)
的值域為
”為真命題,則實數(shù)a的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南北朝時期的數(shù)學(xué)家祖暅提出了計算體積的祖暅原理:“冪勢既同,則積不容異。”意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.已知曲線,直線
為曲線
在點
處的切線.如圖所示,陰影部分為曲線
、直線
以及
軸所圍成的平面圖形,記該平面圖形繞
軸旋轉(zhuǎn)一周所得的幾何體為
.給出以下四個幾何體:
① ② ③ ④
圖①是底面直徑和高均為的圓錐;
圖②是將底面直徑和高均為的圓柱挖掉一個與圓柱同底等高的倒置圓錐得到的幾何體;
圖③是底面邊長和高均為的正四棱錐;
圖④是將上底面直徑為,下底面直徑為
,高為
的圓臺挖掉一個底面直徑為
,高為
的倒置圓錐得到的幾何體.
根據(jù)祖暅原理,以上四個幾何體中與的體積相等的是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體是由一個直平行六面體被平面所截后得到的,其中
,
,
.
(1)求證:平面平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:關(guān)于x的方程xa在(1,+∞)上有實根;命題q:方程
1表示的曲線是焦點在x軸上的橢圓.
(1)若p是真命題,求a的取值范圍;
(2)若p∧q是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,
為橢圓上不與左右頂點重合的任意一點,
,
分別為
的內(nèi)心、重心,當(dāng)
軸時,橢圓的離心率為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com