日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直二面角D﹣AB﹣E中,四邊形ABCD是邊長為2的正方形,AE=EB,點F在CE上,且BF⊥平面ACE;
(1)求證:AE⊥平面BCE;
(2)求二面角B﹣AC﹣E的正弦值;
(3)求點D到平面ACE的距離.

【答案】
(1)證明:∵BF⊥平面ACE,∴BF⊥AE,

∵二面角D﹣AB﹣E為直二面角,

∴平面ABCD⊥平面ABE,

又BC⊥AB,∴BC⊥平面ABE,則BC⊥AE,

又BF平面BCE,BF∩BC=B,

∴AE⊥平面BCE


(2)法一、解:連接AC、BD交于G,連接FG,

∵ABCD為正方形,∴BD⊥AC,

∵BF⊥平面ACE,BG⊥AC,∴AC⊥平面BFG,

∴FG⊥AC,即∠FGB為二面角B﹣AC﹣E的平面角,

由(1)可知,AE⊥平面BCE,∴AE⊥EB,

又AE=EB,AB=2,AE=BE=

在直角三角形BCE中,CE= = ,BF= =

在正方形中,BG= ,在直角三角形BFG中,sin∠FGB=

法二、以線段AB的中點為原點O,OE所在直線為x軸,AB所在直線為y軸,

過O點平行于AD的直線為z軸,建立空間直角坐標系O﹣xyz,如圖.

∵AE⊥面BCE,BE面BCE,∴AE⊥BE,

在Rt△AEB中,AB=2,O為AB的中點,

∴OE=1.∴A(0,﹣1,0),E(1,0,0),C(0,1,2),

=(1,1,0), =(0,2,2).

設平面AEC的一個法向量為 =(x,y,z),

,令x=1,得 =(1,﹣1,1)是平面AEC的一個法向量.

又平面BAC的一個法向量為 =(1,0,0),

∴cos< >= =

∴二面角B﹣AC﹣E的正弦值為


(3)法一、由(2)可知,在正方形ABCD中,BG=DG,D到平面ACE的距離等于B到平面ACE的距離,

BF⊥平面ACE,線段BF的長度就是點B到平面ACE的距離,即為D到平面ACE的距離所以D到平面的距離為

法二、

解:∵AD∥z軸,AD=2,∴ =(0,0,2),

∴點D到平面ACE的距離d=| ||cos< >= =


【解析】(1)要證AE⊥平面BCE,只需證明AE垂直平面BCE內的兩條相交直線BF、BC即可;(2)連接AC、BD交于G,連接FG,說明∠FGB為二面角B﹣AC﹣E的平面角,然后求二面角B﹣AC﹣E的大小;(3)利用VDACE=VEACD , 求點D到平面ACE的距離,也可以利用空間直角坐標系,向量的數量積,證明垂直,求出向量的模.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3﹣3x.
(1)求曲線y=f(x)在點x=2處的切線方程;
(2)若過點A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學同時擲兩顆骰子,得到點數分別為a,b,則橢圓 =1(a>b>0)的離心率e> 的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=log2(ax2+4x+5).
(1)若f(1)<3,求a的取值范圍;
(2)若a=1,求函數f(x)的值域.
(3)若f(x)的值域為R,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(2x+φ),其中φ為實數,若f(x)≤|f( )|對x∈R恒成立,且f( )>f(π),則f(x)的單調遞增區間是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在其定義域內有兩個不同的極值點.

(1)求的取值范圍.

(2)設的兩個極值點為,證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)的導函數y=f′(x)的圖象如圖所示,則關于函數y=f(x),下列說法正確的是(
A.在x=﹣1處取得極大值
B.在區間[﹣1,4]上是增函數
C.在x=1處取得極大值
D.在區間[1,+∞)上是減函數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3+ax2+bx+c在x=﹣ 與x=1時都取得極值.
(1)求a、b的值與函數f(x)的單調區間;
(2)若對x∈[﹣1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(Ⅰ)求曲線在點處的切線方程

(Ⅱ)求證:

(Ⅲ)判斷曲線是否位于軸下方,并說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲成人免费在线观看 | 91中文字幕 | 91精品久久久久久久 | 成人欧美一区二区三区黑人孕妇 | 激情三区 | 日本成人在线视频网站 | 啵啵影院午夜男人免费视频 | 色婷婷综合网 | 视色视频在线观看 | 久久9热 | 日韩久久综合 | 激情久久久久 | 欧美精品成人 | 国产美女在线精品免费观看网址 | 毛片网站免费观看 | 最新亚洲黄色网址 | www.黄网| 亚洲国产精品一区 | 国产精品美腿一区在线看 | 日韩在线色| 中文日韩在线 | 特级毛片在线大全免费播放 | 久久国产99 | 毛片黄色 | 黄色片毛片 | 欧日韩免费视频 | 亚洲最大的网站 | 亚洲精品一区二三区不卡 | 亚洲免费网 | 欧美精产国品一二三区 | 国产色视频网站 | 91精品国产91久久久久久蜜臀 | 日本一区二区不卡 | 日韩久久一区二区 | 国产三级日本三级美三级 | 99精品欧美一区二区三区 | 自拍偷拍欧美 | 国产一区二区三区免费 | 中文字幕在线视频网站 | 中文一区 | 一区二区日韩 |