分析 根據平面向量數量積的坐標運算求出f(x),利用三角恒等變換化f(x)為正弦型函數,由此求出f(x)的單調遞增區間.
解答 解:∵$\overrightarrow{OA}$=(2sinx,cosx),$\overrightarrow{OB}$=(sinx,-2$\sqrt{3}$sinx),
∴f(x)=$\overrightarrow{OA}$$•\overrightarrow{OB}$+m+1
=2sin2x-2$\sqrt{3}$sinxcosx
=2•$\frac{1-cos2x}{2}$-$\sqrt{3}$sin2x+m+1
=-cos2x-$\sqrt{3}$sin2x+m+2
=-2($\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$sin2x)+m+2
=-2sin(2x+$\frac{π}{6}$)+m+2,
令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z,
∴$\frac{π}{3}$+2kπ≤2x≤$\frac{4π}{3}$+2kπ,k∈Z,
解得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z,
∴函數y=f(x)的單調遞增區間是[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.
點評 本題考查了平面向量數量積的坐標運算以及三角恒等變換問題,也考查了三角函數的單調性問題,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{3\sqrt{17}}}{17}$ | B. | $\frac{{3\sqrt{2}}}{5}$ | C. | $\frac{{3\sqrt{17}}}{34}$ | D. | $\frac{{2\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com