分析 (Ⅰ)求出函數的導數,設出切點坐標,求出k的值即可;
(Ⅱ)問題轉化為ax+$\frac{a-1}{x}$-lnx≥1恒成立,當a≥1時,記h(x)=ax+$\frac{a-1}{x}$-lnx,根據函數的單調性求出h(x)的最小值,從而證出結論即可.
解答 (Ⅰ)解:由f(x)=lnx,得:f′(x)=$\frac{1}{x}$,
設切點坐標為(x0,y0),
則$\left\{\begin{array}{l}{{y}_{0}=l{nx}_{0}}\\{k=\frac{1}{{x}_{0}}}\\{{y}_{0}={kx}_{0}}\end{array}\right.$,解得:k=$\frac{1}{e}$…..(5分)
(Ⅱ)證明:只需證f(x)-g(x)≥1,
即ax+$\frac{a-1}{x}$-lnx≥1恒成立,
當a≥1時,記h(x)=ax+$\frac{a-1}{x}$-lnx,
則在(0,+∞)上,h(x)≥1,
h′(x)=$\frac{(ax+a-1)(x-1)}{{x}^{2}}$,…..(9分)
∵a≥1,x>0,∴ax+a-1>0,
x∈(0,1)時,h′(x)<0,h(x)單調遞減;
x∈(1,+∞)時,h′(x)>0,h(x)單調遞增
∴h(x)min=h(1)=2a-1,
∵a≥1,∴2a-1≥1,即h(x)≥1恒成立…..(12分)
點評 本題考查了切線方程問題,考查函數的單調性、最值問題,考查導數的應用,是一道中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | cosβ=2cosα | B. | cos2β=2cos2α | C. | cos2β=2cos2α | D. | cos2β=-2cos2α |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}$akm | B. | 2akm | C. | $\sqrt{5}$akm | D. | $\sqrt{7}$akm |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,+∞) | B. | $(1,1+\sqrt{2})$ | C. | $(1,\sqrt{3})$ | D. | $(1-\sqrt{2},1+\sqrt{2})$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com