【題目】過雙曲線x2﹣ =1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為( )
A.10
B.13
C.16
D.19
【答案】B
【解析】解:圓C1:(x+4)2+y2=4的圓心為(﹣4,0),半徑為r1=2;圓C2:(x﹣4)2+y2=1的圓心為(4,0),半徑為r2=1,
設雙曲線x2﹣ =1的左右焦點為F1(﹣4,0),F2(4,0),
連接PF1 , PF2 , F1M,F2N,可得
|PM|2﹣|PN|2=(|PF1|2﹣r12)﹣(|PF2|2﹣r22)
=(|PF1|2﹣4)﹣(|PF2|2﹣1)
=|PF1|2﹣|PF2|2﹣3=(|PF1|﹣|PF2|)(|PF1|+|PF2|)﹣3
=2a(|PF1|+|PF2|﹣3=2(|PF1|+|PF2|)﹣3≥22c﹣3=28﹣3=13.
當且僅當P為右頂點時,取得等號,
即最小值13.
故選B.
求得兩圓的圓心和半徑,設雙曲線x2﹣ =1的左右焦點為F1(﹣4,0),F2(4,0),連接PF1 , PF2 , F1M,F2N,運用勾股定理和雙曲線的定義,結合三點共線時,距離之和取得最小值,計算即可得到所求值.
科目:高中數學 來源: 題型:
【題目】已知f(x),g(x)分別是定義在R上的奇函數和偶函數,且f(x)+g(x)=3x .
(1)求 f(x),g(x);
(2)若對于任意實數t∈[0,1],不等式f(2t)+ag(t)<0恒成立,求實數a的取值范圍;
(3)若存在m∈[﹣2,﹣1],使得不等式af(m)+g(2m)<0成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數f(x)=2sin(3x﹣ ),有下列命題:①其表達式可改寫為y=2cos(3x﹣
);②y=f(x)的最小正周期為
;③y=f(x)在區間(
,
)上是增函數;④將函數y=2sin3x的圖象上所有點向左平行移動
個單位長度就得到函數y=f(x)的圖象.其中正確的命題的序號是(注:將你認為正確的命題序號都填上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是等比數列,首項a1=1,公比q>0,其前n項和為Sn,且S1+a1,S3+a3,S2+a2成等差數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{bn}滿足,Tn為數列{bn}的前n項和,若Tn≥m恒成立,求m的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一條寬為的兩平行河岸有村莊
和供電站
,村莊
與
的直線距離都是
,
與河岸垂直,垂足為
現要修建電纜,從供電站
向村莊
供電.修建地下電纜、水下電纜的費用分別是
萬元
、
萬元
.
(1) 如圖①,已知村莊與
原來鋪設有電纜
,現先從
處修建最短水下電纜到達對岸后后,再修建地下電纜接入原電纜供電,試求該方案總施工費用的最小值;
(2) 如圖②,點在線段
上,且鋪設電纜的線路為
.若
,試用
表示出總施工費用
(萬元)的解析式,并求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在(﹣1,1)上的函數f(x)滿足: ,當x∈(﹣1,0)時,有f(x)>0,且
.設
,則實數m與﹣1的大小關系為( )
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga ,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實數m使得f(x+2)+f(m﹣x)為常數?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實數a的值;
(Ⅱ)若p是q的充分條件,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com