【題目】定義在(﹣1,1)上的函數f(x)滿足: ,當x∈(﹣1,0)時,有f(x)>0,且
.設
,則實數m與﹣1的大小關系為( )
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不確定
科目:高中數學 來源: 題型:
【題目】已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一點,O為坐標原點,則直線OA與y=x2+1有交點的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1),g(x)=loga ,(a>0且a≠1).記F(x)=2f(x)+g(x).
(1)求函數F(x)的零點;
(2)若關于x的方程F(x)﹣2m2+3m+5=0在區間[0,1)內僅有一解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過雙曲線x2﹣ =1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為( )
A.10
B.13
C.16
D.19
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)滿足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )=
f(x)且當0≤x1<x2≤1時,f(x1)≤f(x2),則f(
)+f(
)等于( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}中,a5=9,a7=13,等比數列{bn}的通項公式bn=2n﹣1 , n∈N* . (Ⅰ)求數列{an}的通項公式;
(Ⅱ)求數列{an+bn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和記為Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)當t為何值時,數列{an}為等比數列?
(2)在(1)的條件下,若等差數列{bn}的前n項和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數列,求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前
項和為
,且
.
(1)求證:數列為等比數列;
(2)設數列的前
項和為
,求證:
為定值;
(3)判斷數列中是否存在三項成等差數列,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com