分析 (1)n=1時,a1=S1=2,${a_n}={S_n}-{S_{n-1}}={2^n}$,由此能求出數列{an}的通項公式.
(2 )由bn=an•log2an=${2}^{n}•lo{g}_{2}{2}^{n}$=n•2n,利用錯位相減法能求出數列{bn}的前n項和.
解答 解:(1)∵數列{an}的前n項和Sn=2n+1-2,
∴n=1時,a1=S1=2,(2分)
${S_n}={2^{n+1}}-2$,∴${S_{n-1}}={2^n}-2$(n≥2)
∴${a_n}={S_n}-{S_{n-1}}={2^n}$(n≥2),
n=1時,上式成立,
∴數列{an}的通項公式為:${a_n}={2^n}$. (6分)
( 2 )∵bn=an•log2an=${2}^{n}•lo{g}_{2}{2}^{n}$=n•2n,(7分)
∴數列{bn}的前n項和:
Tn=1•2+2•22+3•23+…+n•2n,①
2Tn=1•22+2•23+3•24+…+n•2n+1,②
①-②,得:-Tn=2+22+23+…+2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}-n•{2}^{n+1}$=(1-n)•2n+1-2,(10分)
∴${T_n}=({n-1}){2^{n+1}}+2$(12分)
點評 本題考查數列的通項公式的求法,考查數列的前n項和公式的求法,是中檔題,解題時要認真審題,注意錯位相減法的合理運用.
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$1 | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com