日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
12.已知直線l的方程為y=x+2,點P是拋物線y2=4x上到直線l距離最小的點,點A是拋物線上異于點P的點,直線AP與直線l交于點Q,過點Q與x軸平行的直線與拋物線y2=4x交于點B.
(Ⅰ)求點P的坐標;
(Ⅱ)證明直線AB恒過定點,并求這個定點的坐標.

分析 (Ⅰ)利用點到直線的距離公式,求出最小值,然后求點P的坐標;
(Ⅱ)設點A的坐標為$({\frac{y_1^2}{4},{y_1}})$,顯然y1≠2.通過當y1=-2時,求出直線AP的方程為x=1;當y1≠-2時,求出直線AP的方程,然后求出Q的坐標,求出B點的坐標,解出直線AB的斜率,推出AB的方程,判斷直線AB恒過定點推出結果.

解答 解:(Ⅰ)設點P的坐標為(x0,y0),則$y_0^2=4{x_0}$,
所以,點P到直線l的距離$d=\frac{{|{{x_0}-{y_0}+2}|}}{{\sqrt{2}}}=\frac{{|{\frac{y_0^2}{4}-{y_0}+2}|}}{{\sqrt{2}}}=\frac{{|{{{({{y_0}-2})}^2}+4}|}}{{4\sqrt{2}}}≥\frac{{\sqrt{2}}}{2}$.
當且僅當y0=2時等號成立,此時P點坐標為(1,2).…(4分)
(Ⅱ)設點A的坐標為$({\frac{y_1^2}{4},{y_1}})$,顯然y1≠2.
當y1=-2時,A點坐標為(1,-2),直線AP的方程為x=1;可得B($\frac{9}{4}$,3),直線AB:y=4x-6;
當y1≠-2時,直線AP的方程為$y-2=\frac{{{y_1}-2}}{{\frac{y_1^2}{4}-1}}({x-1})$,
化簡得4x-(y1+2)y+2y1=0;
綜上,直線AP的方程為4x-(y1+2)y+2y1=0.
與直線l的方程y=x+2聯立,可得點Q的縱坐標為${y_Q}=\frac{{2{y_1}-8}}{{{y_1}-2}}$.
因為,BQ∥x軸,所以B點的縱坐標為${y_B}=\frac{{2{y_1}-8}}{{{y_1}-2}}$.
因此,B點的坐標為$({\frac{{{{({{y_1}-4})}^2}}}{{{{({{y_1}-2})}^2}}},\frac{{2{y_1}-8}}{{{y_1}-2}}})$.
當$\frac{{2{y_1}-8}}{{{y_1}-2}}≠-{y_1}$,即$y_1^2≠8$時,直線AB的斜率$k=\frac{{{y_1}-\frac{{2{y_1}-8}}{{{y_1}-2}}}}{{\frac{y_1^2}{4}-\frac{{{{({{y_1}-4})}^2}}}{{{{({{y_1}-2})}^2}}}}}=\frac{{4{y_1}-8}}{y_1^2-8}$.
所以直線AB的方程為$y-{y_1}=\frac{{4{y_1}-8}}{y_1^2-8}({x-\frac{y_1^2}{4}})$,
整理得$({y-2})y_1^2-4({x-2}){y_1}+8({x-y})=0$.
當x=2,y=2時,上式對任意y1恒成立,
此時,直線AB恒過定點(2,2),也在y=4x-6上,
當$y_1^2=8$時,直線AB的方程為x=2,仍過定點(2,2),
故符合題意的直線AB恒過定點(2,2).…(13分)

點評 本題主要考查拋物線的標準方程與幾何性質、直線方程、直線與拋物線的位置關系等基礎知識,考查推理論證能力、運算求解能力,考查數形結合、化歸與轉化、特殊與一般,分類與整合等數學思想.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

2.求下列各式的值:
(1)${(1.5)^{-2}}+{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+\sqrt{{{(π-4)}^2}}$+$\root{3}{{{{(π-2)}^3}}}$
(2)$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數f(x)=ex-x+$\frac{1}{2}{x^2}(e$為自然對數的底數)g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R).
(Ⅰ)求f(x)的極值;
(Ⅱ)若f(x)≥g(x),求b(a+1)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.某單位有500位職工,其中35歲以下的有125人,35~49歲的有280人,50歲以上的有95人,為了了解職工的健康狀態,采用分層抽樣的方法抽取一個容量為100的樣本,需抽取35歲以下職工人數為25.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.設a,b∈R,函數$f(x)=\frac{1}{3}{x^3}+a{x^2}+bx+1$,g(x)=ex(e為自然對數的底數),且函數f(x)的圖象與函數g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數f(x)的單調性;
(Ⅲ)證明:當$a≤\frac{1}{2}$時,g(x)>f(x)在區間(-∞,0)內恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.三位男同學兩位女同學站成一排,女同學不站兩端的排法總數為(  )
A.6B.36C.48D.120

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.中國古代數學名著《算法統宗》中,許多數學問題都是以詩歌的形式呈現,其中一首詩可改編如下:“甲乙丙丁戊,酒錢欠千文,甲兄告乙弟,三百我還與,轉差十幾文,各人出怎取?”意為:五兄弟,酒錢欠千文,甲還三百,甲乙丙丁戊還錢數依次成等差數列,在這個問題中丁該還150文錢.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.具有公共y軸的兩個直角坐標平面α和β所成的二面角α-y軸-β等于60°,已知β內的曲線C'的方程是y2=4x',曲線C'在α內的射影在平面α內的曲線方程為y2=2px,則p=1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知函數f(x)=($\frac{1}{2}$)x的圖象與函數y=g(x)的圖象關于直線y=x對稱.
(1)若f(g(x))=6-x2,求實數x的值;
(2)若函數y=g(f(x2))的定義域為[m,n](m≥0),值域為[2m,2n],求實數m,n的值;
(3)當x∈[-1,1]時,求函數y=[f(x)]2-2af(x)+3的最小值h(a).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩国产在线 | 亚洲视频一区在线播放 | 国产精品无码专区在线观看 | 欧美精品一区二区三区在线播放 | 欧美亚洲国产一区 | 欧美一级日韩 | 男女羞羞视频免费在线观看 | 欧美激情在线播放 | 欧美一级免费大片 | 国产美女精品人人做人人爽 | 久久久国产一区二区三区 | 日本啪啪网站 | 天天干狠狠操 | 五月婷婷丁香 | 欧美日韩中文字幕在线播放 | 国产欧美一区二区在线观看 | 成人久久18免费观看 | 精品欧美一区二区在线观看 | 国产精品免费一区二区三区四区 | 亚洲精品一区久久久久久 | 久久国产精品99久久久久久牛牛 | 久久精品网 | 国产91精选 | 日本视频不卡 | www.伊人| 欧美中文在线 | 日韩中文在线观看 | 国产成人精品久久 | 91日日 | 少妇一区二区三区毛片免费下载看 | 亚洲第一中文字幕 | 欧美在线视频一区 | 日韩成人一区二区 | 欧美性一区二区三区 | 羞羞网站在线观看入口免费 | 欧美一级片在线 | 久久国产视频一区二区 | 国产极品一区二区 | 韩日一区二区 | 日韩欧美亚洲 | 欧美精品在线观看 |