【題目】在三棱錐中,
與
都是正三角形,平面
平面
,若該三棱錐的外接球的體積為
,則
的邊長為__________.
科目:高中數學 來源: 題型:
【題目】第23屆冬季奧運會于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學校放寒假,寒假結束后,某校工會對全校教職工在冬季奧運會期間每天收看比賽轉播的時間作了一次調查,得到如下頻數分布表:
(1)若講每天收看比賽轉播時間不低于3小時的教職工定義為“體育達人”,否則定義為“非體育達人”,請根據頻數分布表補全列聯表:
并判斷能否有90%的把握認為該校教職工是否為“體育達人”與“性別”有關;
(2)在全校“體育達人”中按性別分層抽樣抽取6名,再從這6名“體育達人”中選取2名作冬奧會知識講座.記其中女職工的人數為,求的
分布列與數學期望.
附表及公式:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線:
經過伸縮變換
后得到曲線
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求出曲線、
的參數方程;
(Ⅱ)若、
分別是曲線
、
上的動點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)當時,求函數
的單調遞增區間;
(2)對于,
為任意實數,關于
的方程
恰好有兩個不等實根,求實數
的值;
(3)在(2)的條件下,若不等式在
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一只藥用昆蟲的產卵數y與一定范圍內的溫度x有關, 現收集了該種藥用昆蟲的6組觀測數據如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產卵數y/個 | 6 | 11 | 20 | 27 | 57 | 77 |
經計算得: ,
,
,
,
,線性回歸模型的殘差平方和
,e8.0605≈3167,其中xi, yi分別為觀測數據中的溫度和產卵數,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關于x的回歸方程=
x+
(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關于x的回歸方程為=0.06e0.2303x,且相關指數R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預測溫度為35C時該種藥用昆蟲的產卵數(結果取整數).
附:一組數據(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=
x+
的斜率和截距的最小二乘估計為
=
;相關指數R2=
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確的個數①“,
”的否定是“
,
”;②用相關指數
可以刻畫回歸的擬合效果,
值越小說明模型的擬合效果越好;③命題“若
,則
”的逆命題為真命題;④若
的解集為
,則
.
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin(ωx+φ)+1()的最小正周期為π,且
.
(1)求ω和φ的值;
(2)函數f(x)的圖象縱坐標不變的情況下向右平移個單位,得到函數g(x)的圖象,
①求函數g(x)的單調增區間;
②求函數g(x)在的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com