日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.已知函數(shù)f(x)=alnx+$\frac{1}{x}$,曲線f(x)在點(1,f(1))處的切線平行于x軸.
(1)求f(x)的最小值;
(2)比較f(x)與$f(\frac{1}{x})$的大小;
(3)證明:x>0時,xexlnx+ex>x3

分析 (1)求出函數(shù)的導(dǎo)數(shù),利用曲線f(x)在點(1,f(1))處的切線平行于x軸,求出a,然后判斷函數(shù)的單調(diào)性,求解函數(shù)的最小值即可.
(2)令$g(x)=f(x)-f(\frac{1}{x})$,化簡通過函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的符號,然后通過x 的范圍,判斷兩個數(shù)的大小.
(3)要證xexlnx+ex>x3,即證:$lnx+\frac{1}{x}>\frac{x^2}{e^x}$,令$h(x)=\frac{x^2}{e^x}$,利用函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性求出函數(shù)的最小值,即可證明結(jié)果.

解答 (本小題滿分12分)
解:(1)f'(x)=$\frac{a}{x}-\frac{1}{x^2}(x>0)$,根據(jù)題意知f'(1)=0,即a=1,∴$f(x)=lnx+\frac{1}{x}$,
…(2分)
∴f'(x)=$\frac{1}{x}-\frac{1}{x^2}=\frac{x-1}{x^2}$,∴當(dāng)0<x<1時,f'(x)<0,f(x)單調(diào)遞減;
當(dāng)x>1時,f'(x)>0,f(x)單調(diào)遞增;
∴f(x)min=f(1)=1.   …(4分)
(2)令$g(x)=f(x)-f(\frac{1}{x})$=$lnx+\frac{1}{x}-[ln(\frac{1}{x})+x]$=$2lnx+\frac{1}{x}-x$,
$g'(x)=\frac{2}{x}-\frac{1}{x^2}-1=-\frac{{{{(x-1)}^2}}}{x^2}≤0$,
∴g(x)在(0,+∞)上單調(diào)遞減…(6分)
又∵g(1)=0∴當(dāng)0<x<1時,g(x)>g(1)=0,$f(x)>f(\frac{1}{x})$;
當(dāng)x>1時,g(x)<g(1)=0,$f(x)<f(\frac{1}{x})$;
當(dāng)x=1時,g(x)=0,$f(x)=f(\frac{1}{x})$.…(8分)
(3)要證xexlnx+ex>x3,即證:$lnx+\frac{1}{x}>\frac{x^2}{e^x}$…(10分)
令$h(x)=\frac{x^2}{e^x}$,即證∴f(x)>h(x),$h'(x)=\frac{{2x{e^x}-{e^x}{x^2}}}{{{e^{2x}}}}$=$\frac{{2x-{x^2}}}{e^x}$,
∴當(dāng)0<x<2時,h'(x)>0,h(x)單調(diào)遞增;
當(dāng)x>2時,h'(x)<0,h(x)單調(diào)遞減;∴h(x)max=h(2)=$\frac{4}{e^2}<1$,
又由(1)知f(x)min=1,∴f(x)≥1,∴f(x)>h(x),得證.…(12分)
附加題:(每小題(5分),共15分)

點評 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的最值的求法,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內(nèi)的兩個測點C與∠BCD=75°,∠BDC=60°,CD=20mD.現(xiàn)測得,并在點C測得塔頂A的仰角為30°,求塔高AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)直線l 的傾斜角α滿足α∈($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$),則直線l 的斜率k 的取值范圍為(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如表:
x-10245
f(x)12021
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則f(x)的極小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設(shè)點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.
(1)試用向量方法證明E、F、G、H四點共面;
(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,已知A=$\frac{π}{3}$.
(1)若B=$\frac{5π}{12}$,c=$\sqrt{6}$,求a;
(2)若a=$\sqrt{7}$,c=2,求邊b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知xn=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,若5a1=2a2,則a0+a1+a2+a3+…+an=64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某樣本數(shù)據(jù)的莖葉圖如圖所示,若該組數(shù)據(jù)的中位數(shù)為85,平均數(shù)為85.5,則x+y=13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足Sn=$\frac{{n}^{2}+n}{2}$,等比數(shù)列{bn}滿足b2=4,b4=16.
(1)求數(shù)列{an}、數(shù)列{bn}的通項公式;
(2)求數(shù)列{an•bn}的前n項和Tn
(3)在(2)的條件下,當(dāng)n≥2時$\frac{n-1}{{T}_{n}-2}$+2n-5≥k恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 成人高清在线 | 久艹伊人| 99精彩视频 | 成人黄色在线看 | 午夜免费 | 人人干在线视频 | 一区在线播放 | 日韩精品一区二区三区老鸭窝 | 欧美日韩网 | 色综合五月婷婷 | 欧美午夜精品久久久 | 国产精品欧美综合 | 欧美日韩在线精品 | 久久亚洲视频 | 99re6在线视频精品免费 | 黄色自拍视频 | 国产激情在线视频 | 欧美激情视频一区二区三区不卡 | 国产高清一级毛片在线不卡 | 色婷婷久久久久swag精品 | 嫩草视频在线播放 | 毛片在线免费 | 日韩精品一区二区三区第95 | 日韩高清在线 | 国产成人精品在线观看 | 黄一区| 国产精品久久久久久久9999 | 国产l精品国产亚洲区久久 国产suv精品一区 | 伊人福利视频 | 天天操天天拍 | 欧美性福 | 四虎永久网址 | 黄a网站 | 天天操网| 久草资源在线视频 | 一级在线免费视频 | 日本精品久久久久久久 | 99精品欧美一区二区三区 | 综合色成人 | 成年人免费看 | 国产日韩欧美一区二区在线观看 |