日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如圖,在各棱長均為2的正三棱柱中, 分別為棱的中點, 為線段上的動點,其中, 更靠近,且.

(1)證明: 平面

(2)若與平面所成角的正弦值為,求異面直線所成角的余弦值.

【答案】(1)證明見解析.

(2).

【解析】試題分析:(1)根據(jù)正三角形性質(zhì)得,結(jié)合線面垂直得.因此可得平面,即.再根據(jù),得平面,(2)先根據(jù)條件建立空間直角坐標系,設(shè)立各點坐標,利用方程組解平面法向量,根據(jù)向量數(shù)量積求夾角,再根據(jù)線面角與向量夾角互余關(guān)系列方程,解得N坐標,最后根據(jù)向量數(shù)量積求異面直線所成角的余弦值.

試題解析:解:(1)證明:由已知得為正三角形,為棱的中點,

在正三棱柱中,底面,則.

,∴平面,∴.

易證,又,∴平面.

(2)解:取的中點的中點,則

為坐標原點,建立如圖所示的空間直角坐標系

設(shè)

易知是平面的一個法向量,

,解得.

,,

∴異面直線所成角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在矩形中,的中點中點.將沿折起到,使得平面平面(如圖2).

(1)求證:

(2)求直線與平面所成角的正弦值;

(3)在線段上是否存在點,使得平面? 若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的參數(shù)方程化為普通方程;

(Ⅱ)求曲線上的點到曲線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)對任意的mnR都有f(mn)=f(m)+f(n)-1,并且x>0時,恒有f(x)>1.

(1)求證:f(x)R上是增函數(shù);

(2)f(3)=4,解不等式f(a2a-5)<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,中點,且平面為線段上一動點,記

(1)當時,求異面直線所成角的余弦值;

(2)當與平面所成角的正弦值為時,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積是 ,表面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(e是自然對數(shù)的底數(shù)),對任意的R,存在,有,則的取值范圍為____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題 表示雙曲線命題 表示橢圓

(1)若命題與命題 都為真命題 的什么條件

(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)

(2)若 為假命題 為真命題求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(

A. 命題x2=1,x=1”的否命題為:x2=1,x≠1”

B. “m=1”直線x-my=0和直線x+my=0互相垂直的充要條件

C. 命題使得的否定是﹕均有

D. 命題已知、B為一個三角形的兩內(nèi)角,A=B,sinA=sinB”的否命題為真命題

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 99热精品在线 | 精品一区二区三区四区五区 | 国产第一区二区 | 免费的黄色视屏 | 久久久高清| 久久影院一区 | 精品999| a毛片毛片av永久免费 | 亚洲欧美综合 | 久久久国产一区二区三区 | 欧美精品一区二区三区在线播放 | 免费一区二区三区 | 91精品一区二区三区久久久久久 | 狠狠综合久久 | 欧美精品1区2区3区 亚洲区在线 | 国产精品粉嫩白浆在线观看 | 色偷偷噜噜噜亚洲男人的天堂 | 亚洲欧洲一区二区 | 国产精选一区二区三区 | 国产精品99久久久久久大便 | 亚洲美女性视频 | 成人在线| 久久午夜精品影院一区 | av片免费看 | 一级片av | 日韩二区精品 | 国产欧美在线观看 | 欧美日韩精品在线观看 | 男女视频在线观看 | 精品国产依人香蕉在线精品 | 韩日精品在线观看 | 国产精品理论片 | 91国产精品 | 黄影院 | 亚洲一区二区高清视频 | 亚洲视频在线观看 | 亚洲精品视频免费 | 日本成人久久 | 天天干人人| 成人h精品动漫一区二区三区 | 不卡一区 |