【題目】已知曲線的參數方程是
(
為參數),曲線
的參數方程是
(
為參數).
(Ⅰ)將曲線,
的參數方程化為普通方程;
(Ⅱ)求曲線上的點到曲線
的距離的最大值和最小值.
【答案】(Ⅰ)曲線C1的普通方程是,曲線C2的普通方程是2x+3y﹣10=0.
(Ⅱ)最大值為,最小值為
.
【解析】
試題分析:(1)利用平方法將的參數方程消去參數可得到曲線
普通方程,利用代入法將
的參數方程消去參數可得到
的普通方程;(2)根據曲線
的參數方程設點
為
曲線上任意一點,利用點到直線距離公式求出點
到直線的距離
,利用三角函數的有界性可得曲線
上的點到曲線
的距離的最大值和最小值.
試題解析:(1)曲線的參數方程是
(
為參數),則
,
∵ ,
可得,
∴曲線的普通方程是
;
曲線的參數方程是
(
為參數),消去參數
,
,代入
,即
∴曲線的普通方程是
.
(2)設點為曲線
上任意一點,則點
到直線
的距離為
,則
∵
∴
∴
科目:高中數學 來源: 題型:
【題目】“牟合方蓋”是我國古代數學家劉徽在研究球的體積的過程中構造的一個和諧優美的幾何體.它由完全相同的四個曲面構成,相對的兩個曲面在同一個圓柱的側面上,好似兩個扣合(牟合)在一起的方形傘(方蓋).其直觀圖如圖,圖中四邊形是為體現其直觀性所作的輔助線.當其主視圖和側視圖完全相同時,它的俯視圖可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形中,
=
=
=
分別在
上,
,現將四邊形
沿
折起,使
.
(1)若,在折疊后的線段
上是否存在一點
,使得
平面
?若存在,求出
的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知圓的圓心在直線
上,且過點
,與直線
相切.
()求圓
的方程.
()設直線
與圓
相交于
,
兩點.求實數
的取值范圍.
()在(
)的條件下,是否存在實數
,使得弦
的垂直平分線
過點
,若存在,求出實數
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:①殘差可用來判斷模型擬合的效果;
②設有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程必過
;
④在一個2×2列聯表中,由計算得=13.079,則有99%的把握確認這兩個變量間有關系(其中
);
其中錯誤的個數是( )
A. 0 B. 1 C. 2 D. 3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在下列命題中:
①存在一個平面與正方體的12條棱所成的角都相等;
②存在一個平面與正方體的6個面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個面所成的角都相等.
其中真命題的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班50位學生期中考試數學成績的頻率直方分布圖如圖所示,其中成績分組區間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)從成績不低于80分的學生中隨機選取2人,該2人中成績在90分以上(含90分)的人數記為ξ,求ξ的數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com