【題目】己知圓的圓心在直線
上,且過(guò)點(diǎn)
,與直線
相切.
()求圓
的方程.
()設(shè)直線
與圓
相交于
,
兩點(diǎn).求實(shí)數(shù)
的取值范圍.
()在(
)的條件下,是否存在實(shí)數(shù)
,使得弦
的垂直平分線
過(guò)點(diǎn)
,若存在,求出實(shí)數(shù)
的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)
;(3)見(jiàn)解析.
【解析】本試題主要是考查了線與圓的位置關(guān)系的綜合運(yùn)用。
(1)因?yàn)閳AC的圓心在直線y=x+1上,且過(guò)點(diǎn)(1,3),與直線x+2y-7=0相切. 利用圓心到直線的距離等于圓的半徑得到結(jié)論。
(2)因?yàn)橹本與圓相交,則圓心到直線的距離小于圓的半徑得到參數(shù)a的范圍。
(3)設(shè)符合條件的實(shí)數(shù)存在,由于
,則直線
的斜率為
,
的方程為
,即
,由于
垂直平分弦,故圓心
上,從而得到。
解:(1)因?yàn)閳AC的圓心在直線y=x+1上,可設(shè)圓心坐標(biāo)為,由題意可列方
程,解得
,所以圓心坐標(biāo)為(
),半徑
為,所以圓的方程為
。-----------------5分
(2)聯(lián)立方程,消
得
,由于直線與圓交于
兩點(diǎn),所以
,解得
,所以
的取值范圍是(
)------8分(3)設(shè)符合條件的實(shí)數(shù)
存在,由于
,則直線
的斜率為
,
的方程為
,即
,由于
垂直平分弦,故圓心
上,
所以,解得
,由于
,故不存在實(shí)數(shù)
,使得過(guò)點(diǎn)
的直線垂直平分弦.--------------13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是拋物線
的焦點(diǎn), 若點(diǎn)
在
上,且
.
(1)求的值;
(2)若直線經(jīng)過(guò)點(diǎn)
且與
交于
(異于
)兩點(diǎn), 證明: 直線
與直線
的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對(duì)象,如下圖所示((噸)為買進(jìn)蔬菜的質(zhì)量,
(天)為銷售天數(shù)):
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于
的線性回歸方程
;
(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,則預(yù)計(jì)需要銷售多少天.
參考公式: ,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年春節(jié),“搶紅包”成為社會(huì)熱議的話題之一.某機(jī)構(gòu)對(duì)春節(jié)期間用戶利用手機(jī)“搶紅包”的情況進(jìn)行調(diào)查,如果一天內(nèi)搶紅包的總次數(shù)超過(guò)10次為“關(guān)注點(diǎn)高”,否則為“關(guān)注點(diǎn)低”,調(diào)查情況如下表所示:
(1)填寫上表中x,y的值并判斷是否有95%以上的把握認(rèn)為性別與關(guān)注點(diǎn)高低有關(guān)?
(2)現(xiàn)要從上述男性用戶中隨機(jī)選出3名參加一項(xiàng)活動(dòng),以X表示選中的同學(xué)中搶紅包總次數(shù)超過(guò)10次的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).
下面的臨界值表供參考:
獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面平面
,
是等腰直角三角形,
,四邊形
是直角梯形,
,
,
,
,
分別為
,
的中點(diǎn).
(I)求證:平面
.
(II)求直線和平面
所成角的正弦值.
(III)能否在上找一點(diǎn)
,使得
平面
?若能,請(qǐng)指出點(diǎn)
的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形為直角梯形,
,若
是以
為底邊的等腰直角三角形,且
.
(1)證明: 平面
;
(2)求直線與平面
所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是邊長(zhǎng)為
的菱形,
,
平面
,
平面
,
.
(Ⅰ)求證: ;
(Ⅱ)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,
,
,
,
,點(diǎn)
在線段
上.
(Ⅰ)證明;
(Ⅱ)若是
中點(diǎn),證明
平面
;
(Ⅲ)當(dāng)時(shí),求二面角
的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com