【題目】已知橢圓的短軸長為
,過點
,
的直線傾斜角為
.
(1)求橢圓的方程;
(2)是否存在過點且斜率為
的直線
,使直線
交橢圓于
兩點,以
為直徑的圓過點
?若存在,求出直線
的方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】推進垃圾分類處理,是落實綠色發展理念的必然選擇,也是打贏污染防治攻堅戰的重要環節.為了解居民對垃圾分類的了解程度,某社區居委會隨機抽取1000名社區居民參與問卷測試,并將問卷得分繪制頻率分布表如下:
得分 | |||||||
男性人數 | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性人數 | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)從該社區隨機抽取一名居民參與問卷測試,試估計其得分不低于60分的概率;
(2)將居民對垃圾分類的了解程度分為“比較了解“(得分不低于60分)和“不太了解”(得分低于60分)兩類,完成列聯表,并判斷是否有95%的把握認為“居民對垃圾分類的了解程度”與“性別”有關?
不太了解 | 比較了解 | |
男性 | ||
女性 |
(3)從參與問卷測試且得分不低于80分的居民中,按照性別進行分層抽樣,共抽取10人,連同名男性調查員一起組成3個環保宜傳隊.若從這
中隨機抽取3人作為隊長,且男性隊長人數占的期望不小于2.求
的最小值.
附:
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省新課改后某校為預測2020屆高三畢業班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數和其中本科上線人數,并將抽取數據制成下面的條形統計圖.
(1)根據條形統計圖,估計本屆高三學生本科上線率.
(2)已知該省甲市2020屆高考考生人數為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.
(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數據:取,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在等腰梯形中,兩腰
,底邊
,
,
,
是
的三等分點,
是
的中點.分別沿
,
將四邊形
和
折起,使
,
重合于點
,得到如圖2所示的幾何體.在圖2中,
,
分別為
,
的中點.
(1)證明:平面
.
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知單調遞增的等比數列滿足:
.且
是
,
的等差中項.又數列
滿足:
,
,
.
(1)求數列的通項公式;
(2)若,且數列
為等比數列,求
的值;
(3)若,且
為數列
的最小項,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩名同學參加一項射擊比賽游戲,其中任何一人每射擊一次擊中目標得2分,未擊中目標得0分.若甲、乙兩人射擊的命中率分別為和
,且甲、乙兩人各射擊一次得分之和為2的概率為
.假設甲、乙兩人射擊互不影響,則
值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合,對于
,
,定義A與B的差為
;A與B之間的距離為
.
(I)若,試寫出所有可能的A,B;
(II),證明:
(i);
(ii)三個數中至少有一個是偶數;
(III)設,
中有m(
,且為奇數)個元素,記P中所有兩元素間距離的平均值為
,證明:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com