日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
19.已知圓$C:{(x+\sqrt{3})^2}+{y^2}=16,點A(\sqrt{3},0)$,Q是圓上一動點,AQ的垂直平分線交CQ于點M,設點M的軌跡為E.
(I)求軌跡E的方程;
(II)過點A作圓x2+y2=1的切線l交軌跡E于B,D兩點,求|BD|的值.

分析 (Ⅰ)先根據橢圓的定義,確定軌跡E是以A,C為焦點,長軸長為4的橢圓,再寫出橢圓的方程;
(Ⅱ)設切線l的方程為y=k(x-$\sqrt{3}$),代入橢圓方程,由l與圓x2+y2=1相切,得$\frac{|\sqrt{3}k|}{\sqrt{{k}^{2}+1}}$=1,即2k2=1,由此,即可求|BD|的值.

解答 解:(Ⅰ)由題意得|MC|+|MA|=|MC|+|MQ|=|CQ|=4>2$\sqrt{3}$,
∴軌跡E是以A,C為焦點,長軸長為4的橢圓…(2分)
∴軌跡E的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1…(4分)
(Ⅱ)設切線l的方程為y=k(x-$\sqrt{3}$),代入橢圓方程,消元得(1+4k2)x2-8$\sqrt{3}$k2x+12k2-4=0.(8分)
設B,D兩點的坐標分別為(x1,y1),(x2,y2),
則x1+x2=$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$,x1x2=$\frac{12{k}^{2}-4}{1+4{k}^{2}}$,
又由l與圓x2+y2=1相切,得$\frac{|\sqrt{3}k|}{\sqrt{{k}^{2}+1}}$=1,即2k2=1,
∴x1+x2=$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$=$\frac{4\sqrt{3}}{3}$,x1x2=$\frac{12{k}^{2}-4}{1+4{k}^{2}}$=$\frac{2}{3}$,
所以|BD|=$\sqrt{1+\frac{1}{2}}$•$\sqrt{\frac{16}{3}-\frac{4}{9}}$=$\frac{\sqrt{66}}{3}$.(12分)

點評 本題考查橢圓的定義,考查橢圓的標準方程,考查直線與橢圓的位置關系,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.已知函數f(x)=$\left\{{\begin{array}{l}{(2-a)x+3a,x<1}\\{{{log}_2}x,x≥1}\end{array}}\right.$的值域為R,則實數a的取值范圍是(  )
A.(-1,2)B.[-1,2)C.(-∞,-1]D.{-1}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.如圖,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=$\frac{3}{2}$,BC=$\frac{1}{2}$,橢圓以A、B為焦點且經過點D.
(Ⅰ)建立適當的直角坐標系,求橢圓的方程;
(Ⅱ)若點E滿足$\overrightarrow{EC}$=$\frac{1}{2}$$\overrightarrow{AB}$,問是否存在直線l與橢圓交于M、N兩點,且|ME|=|NE|?若存在,求出直線l與AB夾角θ的正切值的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.設f(x)=x-alnx.(a≠0)
(Ⅰ)討論f(x)的單調性;
(Ⅱ)若f(x)≥a2,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知圓F1:(x+$\sqrt{3}$)2+y2=16,圓心為F1,定點F2($\sqrt{3}$,0),P為圓F1上一點,線段PF2的垂直平分線與直線PF1交于點Q.
(1)求點Q的軌跡C的方程;
(2)過點(0,2)的直線l與曲線C交于不同的兩點A和B,且滿足∠AOB<90°(O為坐標原點),求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.在直角坐標系xoy中,點P到兩點$(-2\sqrt{2},0)$、$(2\sqrt{2},0)$的距離之和等于6,設點P的軌跡為曲線C,直線x-my-1=0與曲線C交于A、B兩點.
(Ⅰ)求曲線C的方程;
(Ⅱ)若以線段AB為直徑的圓過坐標原點,求m的值;
(Ⅲ)當實數m取何值時,△AOB的面積最大,并求出面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知直線l與圓C:x2+y2+2x-4y+a=0相交于A,B兩點,弦AB的中點為M(0,1).
(1)求實數a的取值范圍以及直線l的方程;
(2)若以$\overrightarrow{AB}$為直徑的圓過原點O,求圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知曲線C的參數方程為$\left\{\begin{array}{l}x=-2+\sqrt{10}cosα\\ y=\sqrt{10}sinα\end{array}\right.$(α為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為$ρcos({θ-\frac{π}{4}})=2\sqrt{2}$
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)設點P是曲線C上的一個動點,求它到直線l的距離d的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知長方體ABCD-A1B1C1D1,AB=BC=2,CC1=2$\sqrt{2}$,E為CC1的中點,則點A到平面BED的距離為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2、

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人毛片在线视频 | 热久久久 | 北条麻妃国产九九九精品小说 | 成人黄网在线观看 | igao视频| 国产精品久久久久久久久久 | 欧美精品一区二区在线观看 | 成人a视频在线观看 | 亚州av| 国产高清毛片 | 成人a视频在线观看 | 在线精品观看 | 欧洲精品视频一区 | 黑人精品 | 久久精品一区二区三区不卡牛牛 | 91免费观看 | 国产精品亚洲成人 | 久久精品国产99国产精品 | 国产精品国产成人国产三级 | 日韩亚洲视频在线观看 | www.久久久.com | 黄色毛片看看 | 国产一区二区精品丝袜 | 做a视频 | 日韩中文字幕在线观看 | 天天看天天爽 | 日韩精品一区二区三区 | 亚洲国产一区二区三区 | 男人av网 | 色天天久久 | 狠狠操狠狠操 | 亚洲欧美视频 | 亚洲1区2区在线 | 高清国产一区二区三区四区五区 | 久久成人精品一区二区三区 | 成人一区视频 | 国产乱码精品一区二区三区爽爽爽 | 日本亚洲国产一区二区三区 | 91免费国产 | 久草资源在线 | 午夜免费视频 |