日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,已知BC=DC=AB=AD=
2
,BD=2,平面ABD⊥平面BCD,O為BD中點,點P,Q分別為線段AO,BC上的動點(不含端點),且AP=CQ,則三棱錐P-QCO體積的最大值為
 
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關系與距離
分析:由已知得AO⊥平面BCD,AO=OC=1,∠OCB=45°,設AP=x(0<x<1),三棱錐P-QCO體積V=
1
3
×OP×S△OCQ
=
1
3
(1-x)•
2
4
x
2
12
(
x+1-x
2
)2
=
2
48
.由此能求出三棱錐P-QCO體積的最大值.
解答: 解:如圖所示,
∵BC=DC=AB=AD=
2

平面ABD⊥平面BCD,O為BD的中點,
∴AO⊥平面BCD,AO=OC=1,∠OCB=45°,
設AP=x(0<x<1),
∴S△OCQ=
1
2
×OC×CQ×sin45°

=
1
2
×1×x×sin45°
=
2
4
x

∴三棱錐P-QCO體積:
V=
1
3
×OP×S△OCQ
=
1
3
(1-x)•
2
4
x

=
2
12
x(1-x)
2
12
x(1-x)
2
12
(
x+1-x
2
)2
=
2
48

當且僅當x=
1
2
時取等號,
∴三棱錐P-QCO體積的最大值為
2
48

故答案為:
2
48
點評:本題考查三棱錐P-QCO體積的最大值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

求證:tan(
x
2
+
π
4
)+tan(
x
2
-
π
4
)=2tanx.

查看答案和解析>>

科目:高中數學 來源: 題型:

設正方體的棱長為2,一個球內切于該正方體,那么這個球的體積是(  )
A、
6
π
B、
32
3
π
C、
8
3
π
D、
4
3
π

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a為實數,兩直線l1:ax+y+1=0,l2:x+y-a=0相交于一點,求證:交點不可能在第一象限及x軸上.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知三棱錐O-ABC,∠BOC=90°.OA⊥平面BOC,AB=
10
,BC=
13
,AC=
5
,則此三棱錐外接球的表面積為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:△ABC是正三角形,EA、CD垂直平面ABC,且EA=AB=2,DC=1,F是BE中點.求證:(1)FD∥平面ABC;
(2)AF⊥平面BDE.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ<π )的一個最高點坐標為(
π
12
,3),其圖象與x軸的相鄰兩個交點的距離為
π
2

(1)求f(x)的最小正周期及解析式;
(2)若x∈[-
π
2
π
12
),求函數g(x)=f(x+
π
6
)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

兩數5280,12155的最大公約數為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

O、A、B是平面上不共線三點,向量
OA
=
a
OB
=
b
,設P為線段AB垂直平分線上任意一點,向量
OP
=
p
,|
a
|=3,|
b
|=1,則
p
•(
a
-
b
)的值為
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 色综合天天综合网国产成人网 | 国产三级成人 | 午夜精品视频在线观看 | 日韩成人一区二区 | www.99热 | 久久精品网 | 老女人毛片| 午夜国产一区 | 国产美女视频网站 | 在线播放一区 | 欧美日韩一区二区三区四区 | 中文字幕第一页在线 | 亚洲人成在线播放 | 精品免费国产 | 欧美久久久久久久 | 黄色1级视频 | 免费av片| 久久久精品国产sm调教网站 | 精品一区二区三区免费 | 久久久久久九九九九 | www.五月婷婷| 婷婷六月激情 | 国产乱淫av片免费 | 亚洲精品日本 | 成 人 黄 色 片 在线播放 | 成人午夜av| 成人9ⅰ免费影视网站 | 日本不卡一区 | 日韩精品影视 | 四虎在线视频 | 蜜桃av一区 | 午夜婷婷 | 一级片免费在线观看 | 亚洲在线视频观看 | 女人av在线 | 婷婷综合五月天 | 国产精品久免费的黄网站 | 亚洲精品一区二三区不卡 | 色偷偷噜噜噜亚洲男人 | 好色婷婷| 国产草草 |