【題目】斐波拉契數(shù)列,指的是這樣一個數(shù)列:1,1,2,3,5,8,13,21,…,在數(shù)學(xué)上,斐波拉契數(shù)列{an}定義如下:a1=a2=1,an=an﹣1+an﹣2(n≥3,n∈N),隨著n的增大,越來越逼近黃金分割
0.618,故此數(shù)列也稱黃金分割數(shù)列,而以an+1、an為長和寬的長方形稱為“最美長方形”,已知某“最美長方形”的面積約為200平方厘米,則該長方形的長大約是( )
A.20厘米B.19厘米C.18厘米D.17厘米
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個多面體的直觀圖及三視圖如圖所示,其中M ,N 分別是AF、BC 的中點(diǎn)
(1)求證:MN∥平面CDEF;
(2)求多面體A-CDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐中,
,△
為等邊三角形,二面角
的余弦值為
,當(dāng)三棱錐的體積最大時,其外接球的表面積為
.則三棱錐體積的最大值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項為正數(shù)的數(shù)列如果滿足:存在實(shí)數(shù)
,對任意正整數(shù)n,
恒成立,且存在正整數(shù)n,使得
或
成立,則稱數(shù)列
為“緊密數(shù)列”,k稱為“緊密數(shù)列”
的“緊密度”.已知數(shù)列
的各項為正數(shù),前n項和為
,且對任意正整數(shù)n,
(A,B,C為常數(shù))恒成立.
(1)當(dāng),
,
時,
①求數(shù)列的通項公式;
②證明數(shù)列是“緊密度”為3的“緊密數(shù)列”;
(2)當(dāng)時,已知數(shù)列
和數(shù)列
都為“緊密數(shù)列”,“緊密度”分別為
,
,且
,
,求實(shí)數(shù)B的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>
,并滿足以下條件:①對任意
,有
;②對任意
,有
;③
.
(Ⅰ)求的值;
(Ⅱ)求證:在
上是單調(diào)增函數(shù);
(Ⅲ)若,且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=3,直線PA與圓O相切于點(diǎn)A,直線PB垂直y軸于點(diǎn)B,且|PB|=2|PA|.
(1)求點(diǎn)P的軌跡E的方程;
(2)過點(diǎn)(1,0)且與x軸不重合的直線與軌跡E相交于P,Q兩點(diǎn),在x軸上是否存在定點(diǎn)D,使得x軸是∠PDQ的角平分線,若存在,求出D點(diǎn)坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1)求的單調(diào)區(qū)間;
(2)若,
在其公共點(diǎn)
處切線相同,求實(shí)數(shù)a的值;
(3)記,若函數(shù)
存在兩個零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:
.
Ⅰ
直線l的參數(shù)方程化為極坐標(biāo)方程;
Ⅱ
求直線l與曲線C交點(diǎn)的極坐標(biāo)
其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在二項式的展開式中,前三項系數(shù)的絕對值成等差數(shù)列。
(1)求展開式的第四項;
(2)求展開式的常數(shù)項;
(3)求展開式中各項的系數(shù)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com