【題目】三棱錐中,
,△
為等邊三角形,二面角
的余弦值為
,當三棱錐的體積最大時,其外接球的表面積為
.則三棱錐體積的最大值為( )
A.B.
C.
D.
【答案】D
【解析】
由已知作出圖象,找出二面角的平面角,設出
的長,即可求出三棱錐
的高,然后利用基本不等式即可確定三棱錐體積的最大值(用含有
長度的字母表示),再設出球心
,由球的表面積求得半徑,根據球的幾何性質,利用球心距,半徑,底面半徑之間的關系求得
的長度,則三棱錐體積的最大值可求.
如圖所示,過點作
面
,垂足為
,過點
作
交
于點
,連接
,
則為二面角
的平面角的補角,即有
,
易知面
,則
,而△
為等邊三角形,
∴為
中點,
設,
則c
,
故三棱錐的體積為:
,
當且僅當時,體積最大,此時
共線.
設三棱錐的外接球的球心為
,半徑為
,
由已知,,得
.
過點作
于F,則四邊形
為矩形,
則,
,
,
在△
中
,解得
∴三棱錐的體積的最大值為:
.
故選:D.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
、
、
分別為棱
、
、
的中點,
平面
,
,
,
,則( )
A.三棱錐的體積為
B.直線與直線
垂直
C.平面截三棱錐
所得的截面面積為
D.點與點
到平面
的距離相等
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以
為極點,
軸正半軸為極軸建立極坐標系.已知曲線
的參數方程為
(
為參數,
),曲線
的極坐標方程為
,點
是
與
的一個交點,其極坐標為
.設射線
與曲線
相交于
,
兩點,與曲線
相交于
,
兩點.
(1)求,
的值;
(2)求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為實現2020年全面建設小康社會,某地進行產業的升級改造.經市場調研和科學研判,準備大規模生產某高科技產品的一個核心部件,目前只有甲、乙兩種設備可以獨立生產該部件.如圖是從甲設備生產的部件中隨機抽取400件,對其核心部件的尺寸x,進行統計整理的頻率分布直方圖.
根據行業質量標準規定,該核心部件尺寸x滿足:|x﹣12|≤1為一級品,1<|x﹣12|≤2為二級品,|x﹣12|>2為三級品.
(Ⅰ)現根據頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產品,再從所抽取的40件產品中,抽取2件尺寸x∈[12,15]的產品,記ξ為這2件產品中尺寸x∈[14,15]的產品個數,求ξ的分布列和數學期望;
(Ⅱ)將甲設備生產的產品成箱包裝出售時,需要進行檢驗.已知每箱有100件產品,每件產品的檢驗費用為50元.檢驗規定:若檢驗出三級品需更換為一級或二級品;若不檢驗,讓三級品進入買家,廠家需向買家每件支付200元補償.現從一箱產品中隨機抽檢了10件,結果發現有1件三級品.若將甲設備的樣本頻率作為總體的慨率,以廠家支付費用作為決策依據,問是否對該箱中剩余產品進行一一檢驗?請說明理由;
(Ⅲ)為加大升級力度,廠家需增購設備.已知這種產品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設備產品中一、二、三級品的概率分別是,
,
.若將甲設備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據.應選購哪種設備?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(t為參數),曲線C2的參數方程為
(α為參數),以坐標原點為極點.x軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標方程;
(Ⅱ)射線與曲線C2交于O,P兩點,射線
與曲線C1交于點Q,若△OPQ的面積為1,求|OP|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數,將曲線
經過伸縮變換
后得到曲線
.在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)說明曲線是哪一種曲線,并將曲線
的方程化為極坐標方程;
(2)已知點是曲線
上的任意一點,又直線
上有兩點
和
,且
,又點
的極角為
,點
的極角為銳角.求:
①點的極角;
②面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設α,β是空間中的兩個平面,l,m是兩條直線,則使得α∥β成立的一個充分條件是( )
A.lα,mβ,l∥mB.l⊥m,l∥α,m⊥β
C.lα,mα,l∥β,m∥βD.l∥m,l⊥α,m⊥β
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2021年某省將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com