【題目】下列說法正確的是( )
A. 命題“若x2=1,則x≠1”的否命題是“若x2=1,則x=1”
B. 命題“”的否定是“x∈R,x2﹣x>0”
C. “y=f(x)在x0處有極值”是“f'(x0)=0”的充要條件
D. 命題“若函數f(x)=x2﹣ax+1有零點,則“a≥2或a≤﹣2”的逆否命題為真命題
【答案】D
【解析】
對于A,根據否命題的概念可得到結論;對于B特稱命題的否定是全稱命題;C,根據極值點的概念判斷即可;D,二次函數在R上有零點,即判別式大于等于0即可,可得到正誤.
對于A,命題“若x2=1,則x≠1”的否命題是“若x2≠1,則x=1”,否命題既否條件又否結論,故命題不正確;對于B,命題“”的否定是“x∈R,x2﹣x
0”故命題錯誤;對于C,“y=f(x)在x0處有極值”,則“f'(x0)=0”,反之,“f'(x0)=0”不一定有“y=f(x)在x0處有極值”;對于D,命題“若函數f(x)=x2﹣ax+1有零點,則“a≥2或a≤﹣2”的逆否命題和原命題的真假性相同,原命題f(x)=x2﹣ax+1有零點,只需要判別式大于等于0,解得a的范圍即a≥2或a≤﹣2,是正確的,故逆否命題也是正確的。
故答案為:D.
科目:高中數學 來源: 題型:
【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關數據如下表:
一次購物款(單位:元) | |||||
顧客人數 |
統計結果顯示位顧客中購物款不低于
元的顧客占
,該商場每日大約有
名顧客,為了增加商場銷售額度,對一次購物不低于
元的顧客發放紀念品.
(Ⅰ)試確定,
的值,并估計每日應準備紀念品的數量;
(Ⅱ)現有人前去該商場購物,求獲得紀念品的數量
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為圓
的圓心,
是圓上的動點,點
在圓的半徑
上,且有點
和
上的點
,滿足
,
.
(1)當點在圓上運動時,求點
的軌跡方程;
(2)若斜率為的直線
與圓
相切,直線
與(1)中所求點
的軌跡交于不同的兩點
,
,
是坐標原點,且
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a,b,c為實數,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分別為集合S,T 的元素個數,則下列結論不可能的是( )
A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】盒子內有3個不同的黑球,5個不同的白球.
(1)全部取出排成一列,3個黑球兩兩不相鄰的排法有多少種?
(2)從中任取6個球,白球的個數不比黑球個數少的取法有多少種?
(3)若取一個白球記2分,取一個黑球記1分,從中任取5個球,使總分不少于7分的取法有多少種?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設關于某設備的使用年限x(年)和所支出的維修費用y萬元有如下的統計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖并判斷是否線性相關;
(2)如果線性相關,求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?
附注:①參考公式:回歸方程中斜率和截距的最小二乘估計分別為
;
②參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.
(1)根據頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司在若干地區各投入4萬元廣告費用之后,對應銷售收益的平均值(以各組的區間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 3 | 7 |
由表中的數據顯示,與
之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出
關于
的回歸直線方程.(參考公式:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】牛頓迭代法(Newton's method)又稱牛頓–拉夫遜方法(Newton–Raphsonmethod),是牛頓在17世紀提出的一種近似求方程根的方法.如圖,設是
的根,選取
作為
初始近似值,過點
作曲線
的切線
與
軸的交點的橫坐標
,稱
是
的一次近似值,過點
作曲線
的切線,則該切線與
軸的交點的橫坐標為
,稱
是
的二次近似值.重復以上過程,直到
的近似值足夠小,即把
作為
的近似解.設
構成數列
.對于下列結論:
①;
②;
③;
④.
其中正確結論的序號為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com