【題目】如圖,在四棱錐中,已知
平面
,且四邊形
為直角梯形,
,
,點
,
分別是
,
的中點.
(1)求證:平面
;
(2)若點為棱
上一點,且平面
平面
, 求證:
科目:高中數學 來源: 題型:
【題目】網絡是一種先進的高頻傳輸技術,我國的
技術發展迅速,已位居世界前列.華為公司2019年8月初推出了一款
手機,現調查得到該款
手機上市時間
和市場占有率
(單位:%)的幾組相關對應數據.如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據數據得出
關于
的線性回歸方程為
.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款
手機市場占有率能超過0.5%(精確到月)( )
A.2020年6月B.2020年7月C.2020年8月D.2020年9月
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年寒假期間新冠肺炎肆虐,全國人民眾志成城抗疫情.某市要求全體市民在家隔離,同時決定全市所有學校推遲開學.某區教育局為了讓學生“停課不停學”,要求學校各科老師每天在網上授課輔導,每天共200分鐘.教育局為了了解高三學生網上學習情況,上課幾天后在全區高三學生中采取隨機抽樣的方法抽取了80名學生(其中男女生恰好各占一半)進行問卷調查,按男女生分為兩組,再將每組學生在線學習時間(分鐘)分為5組,
,
,
,
得到如圖所示的頻率分布直方圖.全區高三學生有3000人(男女生人數大致相等),以頻率估計概率回答下列問題:
(1)估計全區高三學生中網上學習時間不超過40分鐘的人數;
(2)在調查的80名高三學生且學習時間不超過40分鐘的學生中,男女生按分層抽樣的方法抽取6人.若從這6人中隨機抽取2人進行電話訪談,求至少抽到1名男生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,GH是東西方向的公路北側的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設一倉庫,設,并在公路北側建造邊長為
的正方形無頂中轉站CDEF(其中EF在GH上),現從倉庫A向GH和中轉站分別修兩條道路AB,AC,已知AB=AC+1,且
.
(1)求關于
的函數解析式,并求出定義域;
(2)如果中轉站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設中轉站圍墻和兩條道路總造價M最低.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2022年第24屆冬奧會將在北京舉行。為了推動我國冰雪運動的發展,京西某區興建了“騰越”冰雪運動基地。通過對來“騰越”參加冰雪運動的100員運動員隨機抽樣調查,他們的身份分布如下: 注:將表中頻率視為概率。
身份 | 小學生 | 初中生 | 高中生 | 大學生 | 職工 | 合計 |
人數 | 40 | 20 | 10 | 20 | 10 | 100 |
對10名高中生又進行了詳細分類如下表:
年級 | 高一 | 高二 | 高三 | 合計 |
人數 | 4 | 4 | 2 | 10 |
(1)求來“騰越”參加冰雪運動的人員中高中生的概率;
(2)根據統計,春節當天來“騰越”參加冰雪運動的人員中,小學生是340人,估計高中生是多少人?
(3)在上表10名高中生中,從高二,高三6名學生中隨機選出2人進行情況調查,至少有一名高三學生的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長為a,點E,F,G分別為棱AB,AA1,C1D1的中點.下列結論中,正確結論的序號是______.
①過E,F,G三點作正方體的截面,所得截面為正六邊形;
②B1D1∥平面EFG;
③BD1⊥平面ACB1;
④異面直線EF與BD1所成角的正切值為;
⑤四面體ACB1D1的體積等于a3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,其中
,
為左、右焦點,且離心率
,直線
與橢圓交于兩不同點
,
.當直線
過橢圓
右焦點
且傾斜角為
時,原點
到直線
的距離為
.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]
(Ⅰ)求橢圓的方程;
(Ⅱ)若,當
面積為
時,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com