【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.
非一線城市 | 一線城市 | 總計 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計 | 58 | 42 | 100 |
附表:
由算得,
,
參照附表,得到的正確結(jié)論是
A. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關(guān)”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關(guān)”
C. 有99%以上的把握認為“生育意愿與城市級別有關(guān)”
D. 有99%以上的把握認為“生育意愿與城市級別無關(guān)”
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x+2sinxcosx﹣sin2x.
(1)求函數(shù)f(x)的最小正周期
(2)求函數(shù)f(x)單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩焦點分別為
,其短半軸長為
.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點的直線
與橢圓
相交于兩點
.若直線
與
的斜率之和為
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)
的單調(diào)區(qū)間;
(2)若不等式對任意的正實數(shù)
都成立,求實數(shù)
的最大整數(shù);
(3)當時,若存在實數(shù)
且
,使得
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機對心肺疾病入院的人進行問卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | |||
女 | |||
合計 |
(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)在上述抽取的人中選
人,求恰好有
名女性的概率;
(3)為了研究心肺疾病是否與性別有關(guān),請計算出統(tǒng)計量,你有多大把握認為心肺疾病與性別有關(guān)?
參考公式: ,其中
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形中,
,
,
,四邊形
是直角梯形,
,
,
,平面
平面
.
(1)求證:平面
;
(2)在線段上是否存在一點
,使得平面
與平面
所成的銳二面角的余弦值為
,若存在,求出點
的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于函數(shù),有下列結(jié)論:
①的定義域為(-1, 1); ②
的值域為(
,
);
③的圖象關(guān)于原點成中心對稱; ④
在其定義域上是減函數(shù);
⑤對的定義城中任意
都有
.
其中正確的結(jié)論序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項是正數(shù)的數(shù)列的前
項和為
.若
,且
.
(1)求數(shù)列的通項公式;
(2)若對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點
坐標為
.
(1)如圖1,斜率存在且過點的直線
與圓交于
兩點.①若
,求直線
的斜率;②若
,求直線
的斜率.
(2)如圖2,為圓
上兩個動點,且滿足
,
為
中點,求
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com