分析 根據同角的三角函數的關系式,結合一元二次函數的性質求出t=sin2x+2cosx+2的取值范圍,結合對數單調性的性質進行求解即可.
解答 解:sin2x+2cosx+2=1-cos2x+2cosx+2=-(cosx-1)2+4,
∵$x∈[{-\frac{π}{6}\;,\;\;\frac{2π}{3}}]$,∴cosx∈[-$\frac{1}{2}$,1],
則當cosx=1時,sin2x+2cosx+2取得最大值4,
當cosx=-$\frac{1}{2}$時,sin2x+2cosx+2取得最小值$\frac{7}{4}$,即當$x∈[{-\frac{π}{6}\;,\;\;\frac{2π}{3}}]$時,函數有意義,
設t=sin2x+2cosx+2,則$\frac{7}{4}$≤t≤4,
則lg$\frac{7}{4}$≤lgt≤lg4,
即函數的最大值為lg4,最小值為lg$\frac{7}{4}$,
故答案為:lg4,lg$\frac{7}{4}$
點評 本題主要考查函數最值的求解,根據復合函數單調性的關系結合一元二次函數和對數函數的單調性的性質是解決本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x∈R,sinx+cosx>$\sqrt{2}$ | B. | 若0<ab<1,則b<$\frac{1}{a}$ | ||
C. | 若x2=|x|,則x=±1 | D. | 若m2+$\sqrt{n}$=0,則m=n=0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-y2=1 | B. | $\frac{{x}^{2}}{3}$-y2=1 | C. | $\frac{{x}^{2}}{2}$-y2=1 | D. | x2-$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com