【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形.
(1)證明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大小.
【答案】
(1)證明:取BC的中點E,連接DE,可得四邊形ABED是正方形
過點P作PO⊥平面ABCD,垂足為O,連接OA、OB、OD、OE
∵△PAB與△PAD都是等邊三角形,∴PA=PB=PD,可得OA=OB=OD
因此,O是正方形ABED的對角線的交點,可得OE⊥OB
∵PO⊥平面ABCD,得直線OB是直線PB在內的射影,∴OE⊥PB
∵△BCD中,E、O分別為BC、BD的中點,∴OE∥CD,可得PB⊥CD;
(2)解:由(1)知CD⊥PO,CD⊥PB
∵PO、PB是平面PBD內的相交直線,∴CD⊥平面PBD
∵PD平面PBD,∴CD⊥PD
取PD的中點F,PC的中點G,連接FG,
則FG為△PCD有中位線,∴FG∥CD,可得FG⊥PD
連接AF,由△PAD是等邊三角形可得AF⊥PD,∴∠AFG為二面角A﹣PD﹣C的平面角
連接AG、EG,則EG∥PB
∵PB⊥OE,∴EG⊥OE,
設AB=2,則AE=2 ,EG=
PB=1,故AG=
=3
在△AFG中,FG= CD=
,AF=
,AG=3
∴cos∠AFG= =﹣
,得∠AFG=π﹣arccos
,
即二面角A﹣PD﹣C的平面角大小是π﹣arccos .
【解析】(1)取BC的中點E,連接DE,過點P作PO⊥平面ABCD于O,連接OA、OB、OD、OE.可證出四邊形ABED是正方形,且O為正方形ABED的中心.因此OE⊥OB,結合三垂線定理,證出OE⊥PB,而OE是△BCD的中位線,可得OE∥CD,因此PB⊥CD;(2)由(1)的結論,證出CD⊥平面PBD,從而得到CD⊥PD.取PD的中點F,PC的中點G,連接FG,可得FG∥CD,所以FG⊥PD.連接AF,可得AF⊥PD,因此∠AFG為二面角A﹣PD﹣C的平面角,連接AG、EG,則EG∥PB,可得EG⊥OE.設AB=2,可求出AE、EG、AG、AF和FG的長,最后在△AFG中利用余弦定理,算出∠AFG=π﹣arccos ,即得二面角A﹣PD﹣C的平面角大小.
【考點精析】本題主要考查了直線與平面垂直的性質和共線向量與共面向量的相關知識點,需要掌握垂直于同一個平面的兩條直線平行;向量共線的充要條件:對于空間任意兩個向量,
,
的充要條件是存在實數
,使
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某公司生產一種產品,每年投入固定成本萬元.此外,每生產
件這種產品還需要增加投入
萬元.經測算,市場對該產品的年需求量為
件,且當出售的這種產品的數量為
(單位:百件)時,銷售所得的收入約為
(萬元).
(1)若該公司這種產品的年產量為(單位:百件),試把該公司生產并銷售這種產品所得的年利潤
表示為年產量
的函數;
(2)當該公司的年產量為多少時,當年所得利潤
最大?最大為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為促進農業發展,加快農村建設,某地政府扶持興建了一批“超級蔬菜大棚”,為了解大棚的面積與年利潤之間的關系,隨機抽取了其中的7個大棚,并對當年的利潤進行統計整理后得到了如下數據對比表:
由所給數據的散點圖可以看出,各樣本點都分布在一條直線附近,并且與
有很強的線性相關關系.
(1)求關于
的線性回歸方程;(結果保留三位小數);
(2)小明家的“超級蔬菜大棚”面積為8.0畝,估計小明家的大棚當年的利潤為多少;
(3)另外調查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?
參考數據:,
.
參考公式:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cosxsin2x,下列結論中錯誤的是( )
A.y=f(x)的圖象關于(π,0)中心對稱
B.y=f(x)的圖象關于x= 對稱
C.f(x)的最大值為
D.f(x)既是奇函數,又是周期函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某重點中學100位學生在市統考中的理科綜合分數,以,
,
,
,
,
,
分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求理科綜合分數的眾數和中位數;
(3)在理科綜合分數為,
,
,
的四組學生中,用分層抽樣的方法抽取11名學生,則理科綜合分數在
的學生中應抽取多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設D是含數1的有限實數集,f(x)是定義在D上的函數。若f(x)的圖像繞原點逆時針旋轉后與原圖像重合,則在以下各項中,f(1)的取值只可能是( )
A. B.
C.
D. 0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,D為邊BC上一點,AD=6,BD=3, DC=2.
(1)若AD⊥BC,求∠BAC的大小;
(2)若∠ABC= ,求△ADC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com