分析 設g(x)=f(x)-$\frac{1}{2}$x,可得g(x)在R上遞減,求出g(1),運用二倍角余弦公式,將原不等式化為f(2cosx)-cosx<$\frac{1}{2}$,即g(2cosx)<g(1),由單調性可得2cosx<1,解不等式即可得到所求范圍.
解答 解:設$g(x)=f(x)-\frac{1}{2}x,g'(x)=f'(x)-\frac{1}{2}<0$,$g(1)=f(1)-\frac{1}{2}=\frac{1}{2}$,
不等式$f({2cosx})<2{cos^2}\frac{x}{2}-\frac{1}{2}$,
可化為$f({2cosx})-cosx<\frac{1}{2},即g({2cosx})<g(1)$,
由于$g(x)單調遞減,2cosx>1,即cosx>\frac{1}{2}$,
當x∈[0,2π]時,
∴$x∈[{0,\frac{π}{3}})∪({\frac{5π}{3},2π}]$.
故答案為:$[{0,\frac{π}{3}})∪({\frac{5π}{3},2π}]$.
點評 本題考查導數的運用:判斷單調性,考查構造函數法和運用單調性解不等式,考查運算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2016-2017學年安徽六安一中高一上國慶作業(yè)二數學試卷(解析版) 題型:填空題
已知是定義在
上的奇函數且
,當
,且
時,有
,若
對所有
、
恒成立,則實數
的取值范圍是________.
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ① | B. | ①② | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 為定值-3 | B. | 為定值3 | C. | 為定值-1 | D. | 不是定值 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com