分析 由分段函數先求出f($\frac{1}{3}$)=log3$\frac{1}{3}$=-1,從而f(f($\frac{1}{3}$))=f(-1),由此能求出f(f($\frac{1}{3}$))的值;當x>0時,y=f(x)=log3x,當x≤0時,y=f(x)=x2+2x,由此能求出函數y=f(x)的零點.
解答 解:∵函數f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{x}^{2}+2x,x≤0}\end{array}\right.$,
∴f($\frac{1}{3}$)=log3$\frac{1}{3}$=-1,
f(f($\frac{1}{3}$))=f(-1)=(-1)2+2×(-1)=-1.
當x>0時,y=f(x)=log3x,由y=0,解得x=1,
當x≤0時,y=f(x)=x2+2x,由y=0,得x=-2或x=0.(舍).
∴函數y=f(x)的零點是-2,1.
故答案為:-1;-2,1.
點評 本題考查函數值的求法,是基礎題,解題時要認真審題,注意函數性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{29}{45}$ | B. | $\frac{13}{29}$ | C. | $\frac{9}{19}$ | D. | $\frac{19}{30}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [$\frac{π}{2}$,$\frac{2π}{3}$] | B. | [$\frac{π}{6}$,$\frac{π}{3}$] | C. | [$\frac{π}{3}$,$\frac{π}{2}$] | D. | [$\frac{π}{6}$,$\frac{π}{2}$] |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com