【題目】德國數學家科拉茨1937年提出一個著名的猜想:任給一個正整數 ,如果
是偶數,就將它減半(即
);如果
是奇數,則將它乘3加1(即
),不斷重復這樣的運算,經過有限步后,一定可以得到1.對于科拉茨猜想,目前誰也不能證明。也不能否定,現在請你研究:如果對正整數
(首項)按照上述規則旅行變換后的第9項為1(注:1可以多次出現),則
的所有不同值的個數為 .
科目:高中數學 來源: 題型:
【題目】某省2016年高中數學學業水平測試的原始成績采用百分制,發布成績使用等級制.各等級劃分標準如下:85分及以上,記為A等;分數在[70,85)內,記為B等;分數在[60,70)內,記為C等;60分以下,記為D等.同時認定A,B,C為合格,D為不合格.已知某學校學生的原始成績均分布在[50,100]內,為了了解該校學生的成績,抽取了50名學生的原始成績作為樣本進行統計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.
(Ⅰ)求圖中x的值,并根據樣本數據估計該校學生學業水平測試的合格率;
(Ⅱ)在選取的樣本中,從70分以下的學生中隨機抽取3名學生進行調研,用X表示所抽取的3名學生中成績為D等級的人數,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構成,曲線AB和曲線DE分別是頂點在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們在接點B、D處的切線相同,若橋的最高點C到水平面的距離H=6米,圓弧的弓高h=1米,圓弧所對的弦長BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓E: +
=1(a>b>0)的左頂點A(﹣2,0),且點(﹣1,
)在橢圓上,F1、F2分別是橢圓的左、右焦點.過點A作斜率為k(k>0)的直線交橢圓E于另一點B,直線BF2交橢圓E于點C.
(1)求橢圓E的標準方程;
(2)若△CF1F2為等腰三角形,求點B的坐標;
(3)若F1C⊥AB,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M:與
軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長;
(3)若點是直線
上的動點,過點
作直線
與圓M相切,
為切點,求四邊形
面積的最小值.
【答案】(1) (2)
(3)
【解析】試題分析:(1)先將圓的一般方程化成標準方程,利用直線和圓相切進行求解;(2) 令,得到關于
的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉化為點到直線的的距離進行求解.
試題解析:(1) ∵圓M:
與
軸相切
∴ ∴
(2) 令,則
∴
∴
(3)
∵的最小值等于點
到直線
的距離,
∴ ∴
∴四邊形面積的最小值為
.
【題型】解答題
【結束】
20
【題目】在平面直角坐標系中,圓
的方程為
,且圓
與
軸交于
,
兩點,設直線
的方程為
.
(1)當直線與圓
相切時,求直線
的方程;
(2)已知直線與圓
相交于
,
兩點.
(。┤,求實數
的取值范圍;
(ⅱ)直線與直線
相交于點
,直線
,直線
,直線
的斜率分別為
,
,
,
是否存在常數,使得
恒成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為
、
,短軸兩個端點為
、
,且四邊形
是邊長為2的正方形.
(1)求橢圓的方程;
(2)若 、
分別是橢圓長軸的左、右端點,動點
滿足
,連接
,交橢圓于點
.證明:
為定值.
(3)在(2)的條件下,試問 軸上是否存異于點
的定點
,使得以
為直徑的圓恒過直線
、
的交點,若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com