【題目】已知圓,直線
與圓
相交于不同的兩點
,點
是線段
的中點。
(1)求直線的方程;
(2)是否存在與直線平行的直線
,使得
與與圓
相交于不同的兩點
,
不經過點
,且
的面積
最大?若存在,求出
的方程及對應的
的面積S;若不存在,請說明理由。
科目:高中數學 來源: 題型:
【題目】2020年春節突如其來的新型冠狀病毒肺炎在湖北爆發,為了打贏疫情防控阻擊戰,我們執行了延長假期政策,在延長假期面前,我們“停課不停學”,河南省教育廳組織部分優秀學校的優秀教師錄播《名師同步課堂》,我校高一年級要在甲、乙、丙、丁、戊5位數學教師中隨機抽取3人參加錄播課堂,則甲、乙兩位教師同時被選中的概率為( ).
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究黏蟲孵化的平均溫度(單位:
)與孵化天數
之間的關系,某課外興趣小組通過試驗得到如下6組數據:
組號 | 1 | 2 | 3 | 4 | 5 | 6 |
平均溫度 | 15.3 | 16.8 | 17.4 | 18 | 19.5 | 21 |
孵化天數 | 16.7 | 14.8 | 13.9 | 13.5 | 8.4 | 6.2 |
他們分別用兩種模型①,②
分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖:
經計算得,
(1)根據殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?(給出判斷即可,不必說明理由)
(2)殘差絕對值大于1的數據被認為是異常數據,需要剔除,剔除后應用最小二乘法建立關于
的線性回歸方程.(精確到0.1)
,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,若函數
有三個不同的零點
,
,
(其中
),則
的取值范圍為__________.
【答案】
【解析】如圖:
,
,作出函數圖象如圖所示
,
,作出函數圖象如圖所示
,由
有三個不同的零點
,如圖
令
得
為滿足有三個零點,如圖可得
,
點睛:本題考查了函數零點問題,先由導數求出兩個函數的單調性,繼而畫出函數圖像,再由函數的零點個數確定參量取值范圍,將問題轉化為函數的兩根問題來求解,本題需要化歸轉化,函數的思想,零點問題等較為綜合,有很大難度。
【題型】填空題
【結束】
17
【題目】已知等比數列的前
項和為
,且滿足
.
(1)求數列的通項公式;
(2)若數列滿足
,求數列
的前
項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,在
處的切線方程為
.
(1)求,
;
(2)若,證明:
.
【答案】(1),
;(2)見解析
【解析】試題分析:(1)求出函數的導數,得到關于 的方程組,解出即可;
(2)由(1)可知,
,
由,可得
,令
, 利用導數研究其單調性可得
,
從而證明.
試題解析:((1)由題意,所以
,
又,所以
,
若,則
,與
矛盾,故
,
.
(2)由(1)可知,
,
由,可得
,
令,
,
令
當時,
,
單調遞減,且
;
當時,
,
單調遞增;且
,
所以在
上當單調遞減,在
上單調遞增,且
,
故,
故.
【點睛】本題考查利用函數的切線求參數的方法,以及利用導數證明不等式的方法,解題時要認真審題,注意導數性質的合理運用.
【題型】解答題
【結束】
22
【題目】在平面直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
,
與原點
構成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖一塊長方形區域ABCD,AD=2(km),AB=1(km).在邊AD的中點O處,有一個可轉動的探照燈,其照射角∠EOF始終為,設∠AOE=
,探照燈O照射在長方形ABCD內部區域的面積為S.
(1)當0≤時,寫出S關于
的函數表達式;
(2)若探照燈每9分鐘旋轉“一個來回”(OE自OA轉到OC,再回到OA,稱“一個來回”,忽略OE在OA及OC反向旋轉時所用時間),且轉動的角速度大小一定,設AB邊上有一點G,且∠AOG,求點G在“一個來回”中,被照到的時間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險,在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現乙船朝北偏東的方向即沿直線CB前往B處救援,則
等于 ( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com