【題目】設F(x)=f(x)+f(﹣x)在區間 是單調遞減函數,將F(x)的圖象按向量
平移后得到函數G(x)的圖象,則G(x)的一個單調遞增區間是( )
A.
B.
C.
D.
【答案】D
【解析】解答:由于F(﹣x)=F(x),∴F(x)是偶函數,其圖象關于y軸對稱, ∴[ ,π]是函數F(x)的單調遞減區間.
又∵F(x)的圖象按向量 =(
,0)平移得到一個新的函數G(x)的圖象,
∴G(x)的一個單調遞增區間是[ ﹣π,π﹣π],即[
,0].
故選D.
分析:先根據偶函數的定義,得到F(x)是偶函數,然后根據平移后的圖象與原圖象之間的關系即可得到G(x)的一個單調遞增區間.
【考點精析】本題主要考查了函數y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知拋物線C: ,過點
的動直線l與C相交于
兩點,拋物線C在點A和點B處的切線相交于點Q.
(Ⅰ)寫出拋物線的焦點坐標和準線方程;
(Ⅱ)求證:點Q在直線上;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班學生進行了三次數學測試,第一次有8名學生得滿分,第二次有10名學生得滿分,第三次有12名學生得滿分,已知前兩次均為滿分的學生有5名,三次測試中至少又一次得滿分的學生有15名.若后兩次均為滿分的學生至多有名,則
的值為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l: (t為參數).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的坐標方程為ρ=2cosθ.
(1)將曲線C的極坐標方程化為直坐標方程;
(2)設點M的直角坐標為(5, ),直線l與曲線C的交點為A,B,求|MA||MB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點M( ,0)的直線l與拋物線y2=2px(p>0)交于A,B兩點,且
=﹣3,其中O為坐標原點.
(1)求p的值;
(2)當|AM|+4|BM|最小時,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com