【題目】設數列共有
項,記該數列前
項
,
,…,
中的最大項為
,該數列后
項
,
,…,
中的最小項為
,
(
1,2,3,…,
).
(1)若數列的通項公式為
,求數列
的通項公式;
(2)若數列是單調數列,且滿足
,
,求數列
的通項公式;
(3)試構造一個數列,滿足
,其中
是公差不為零的等差數列,
是等比數列,使得對于任意給定的正整數
,數列
都是單調遞增的,并說明理由.
科目:高中數學 來源: 題型:
【題目】談祥柏先生是我國著名的數學科普作家,他寫的《數學百草園》、《好玩的數學》、《故事中的數學》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛.下面我們一起來看《好玩的數學》中談老的一篇文章《五分鐘內挑出埃及分數》:文章首先告訴我們,古埃及人喜歡使用分子為1的分數(稱為埃及分數).如用兩個埃及分數與
的和表示
等.從
這100個埃及分數中挑出不同的3個,使得它們的和為1,這三個分數是________.(按照從大到小的順序排列)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知數列和
滿足:
,
,
,其中
為實數,
為正整數.
(Ⅰ)對任意實數,證明:數列
不是等比數列;
(Ⅱ)證明:當時,數列
是等比數列;
(Ⅲ)設(
為實常數),
為數列
的前
項和.是否存在實數
,使得對任意正整數
,都有
?若存在,求
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:在直角坐標系中,設橢圓
的左右兩個焦點分別為
、
.過右焦點
與
軸垂直的直線
與橢圓C相交,其中一個交點為
.
(1)求橢圓C的方程;
(2)設橢圓C的一個頂點為,求點M到直線
的距離;
(3)過中點的直線
交橢圓于P、Q兩點,求
長的最大值以及相應的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如題所示:扇形ABC是一塊半徑為2千米,圓心角為60°的風景區,P點在弧BC上,現欲在風景區中規劃三條三條商業街道PQ、QR、RP,要求街道PQ與AB垂直,街道PR與AC垂直,直線PQ表示第三條街道。
(1)如果P位于弧BC的中點,求三條街道的總長度;
(2)由于環境的原因,三條街道PQ、PR、QR每年能產生的經濟效益分別為每千米300萬元、200萬元及400萬元,問:這三條街道每年能產生的經濟總效益最高為多少?(精確到1萬元)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,過點
的直線與橢圓
交于
兩點,延長
交橢圓
于點
,
的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點,使得
為定值?若存在,求
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設關于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數
(1)證明f(x)在區間(α,β)上是增函數;
(2)當a為何值時,f(x)在區間[α,β]上的最大值與最小值之差最小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是拋物線
:
的焦點,直線
與拋物線
相切于點
,連接
交拋物線于另一點
,過點
作
的垂線交拋物線
于另一點
.
(1)若,求直線
的方程;
(2)求三角形面積
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com