【題目】在平面直角坐標系中,O為坐標原點,以O為圓心的圓與直線
相切.
(1)求圓O的方程.
(2)直線與圓O交于A,B兩點,在圓O上是否存在一點M,使得四邊形
為菱形?若存在,求出此時直線l的斜率;若不存在,說明理由.
【答案】(1)x2+y2=4.(2)直線l的斜率為±2.
【解析】
試題(1)先根據圓心到切線距離等于半徑求,再根據標準式寫圓方程(2)由題意得OM與AB互相垂直且平分,即得原點O到直線l的距離,再根據點到直線距離公式求直線斜率
試題解析:(1)設圓O的半徑長為r,因為直線x-y-4=0與圓O相切,所以 r=
=2.
所以圓O的方程為 x2+y2=4.
(2)假設存在點M,使得四邊形OAMB為菱形,則OM與AB互相垂直且平分,
所以原點O到直線l:y=kx+3的距離d=|OM|=1.所以
=1,解得k2=8,即k=±2
,經驗證滿足條件.所以存在點M,使得四邊形OAMB為菱形,此時直線l的斜率為±2
.
科目:高中數學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,
)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一場娛樂晚會上,有5位民間歌手(1到5號)登臺演唱,由現場數百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨立地在選票上選3名歌手,其中觀眾甲是1號歌手的歌迷,他必選1號,不選2號,另在3至5號中隨機選2名.觀眾乙和丙對5位歌手的演唱沒有偏愛,因此在1至5號中選3名歌手.
(1)求觀眾甲選中3號歌手且觀眾乙未選中3號歌手的概率;
(2)表示3號歌手得到觀眾甲、乙、丙的票數之和,求“
”的事件概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,過點
的直線
的參數方程為
(
為參數).以原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)若直線與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前
項和為
,若對任意
,都有
,則稱數列
具有性質P.
(1)若數列是首項為1,公比為2的等比數列,試判斷數列
是否具有性質P;
(2)若正項等差數列具有性質P,求數列
的公差;
(3)已知正項數列具有性質P,
,且對任意
,有
,求數列
的通項公式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com