【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,過點
的直線
的參數方程為
(
為參數).以原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)若直線與曲線
相交于
,
兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,動點
到定點
的距離與它到直線
的距離相等.
(1)求動點的軌跡
的方程;
(2)設動直線與曲線
相切于點
,與直線
相交于點
.
證明:以為直徑的圓恒過
軸上某定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.
(I)證明:CE∥平面PAB;
(II)求直線CE與平面PBC所成角的正弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M:,直線l:
,下列四個選項,其中正確的是( )
A.對任意實數k與θ,直線l和圓M有公共點
B.存在實數k與θ,直線l和圓M相離
C.對任意實數k,必存在實數θ,使得直線l與圓M相切
D.對任意實數θ,必存在實數k,使得直線l與圓M相切
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經過點
,平行于
的直線
在
軸上的截距為
,直線
交橢圓于
兩個不同點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經過點
,平行于
的直線
在
軸上的截距為
,直線
交橢圓于
兩個不同點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失敗(滿分為100分).
(1)求圖中的值;
(2)根據已知條件完成下面列聯表,并判斷能否有85%的把握認為“晉級成功”與性別有關?
(參考公式: ,其中
)
(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,合肥一中積極開展美麗校園建設,現擬在邊長為0.6千米的正方形地塊上劃出一片三角形地塊
建設小型生態園,點
分別在邊
上.
(1)當點分別時邊
中點和
靠近
的三等分點時,求
的余弦值;
(2)實地勘察后發現,由于地形等原因,的周長必須為1.2千米,請研究
是否為定值,若是,求此定值,若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com