已知雙曲線的兩個焦點為
的曲線C上.(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程
(Ⅰ) (Ⅱ)方程分別為y=
和
解析試題分析:(Ⅰ)依題意,由a2+b2=4,得雙曲線方程為(0<a2<4),
將點(3,)代入上式,得
.解得a2=18(舍去)或a2=2,故所求雙曲線方程為
(Ⅱ)依題意,可設直線l的方程為y=kx+2,代入雙曲線C的方程并整理,得(1-k2)x2-4kx-6=0.
∵直線I與雙曲線C相交于不同的兩點E、F,
∴ ∴k∈(-
)∪(1,
).
設E(x1,y1),F(x2,y2),則由①式得x1+x2=于是
|EF|=
=,而原點O到直線l的距離d=
,
∴SΔOEF=
若SΔOEF=,即
解得k=±
,滿足②.
故滿足條件的直線l有兩條,其方程分別為y=和
考點:雙曲線的標準方程;直線與圓錐曲線的綜合問題.
點評:本題主要考查了雙曲線的方程和雙曲線與直線的關系,注意計算的靈活處理,考查了學生綜合運
算能力.
科目:高中數學 來源: 題型:解答題
已知M (-3,0)﹑N (3,0),P為坐標平面上的動點,且直線PM與直線PN的斜率之積為常數m (m,m
0),點P的軌跡加上M、N兩點構成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過點Q (2,0) 斜率為
的直線
與曲線C交于不同的兩點A﹑B,AB中點為R,直線OR (O為坐標原點)的斜率為
,求證
為定值;
(3) 在(2)的條件下,設,且
,求
在y軸上的截距的變化范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點是橢圓
的右焦點,點
、
分別是
軸、
軸上的動點,且滿足
.若點
滿足
.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)設過點任作一直線與點
的軌跡交于
、
兩點,直線
、
與直線
分別交
于點、
(
為坐標原點),試判斷
是否為定值?若是,求出這個定值;若不是,
請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
己知橢圓的離心率為
,
是橢圓的左右頂點,
是橢圓的上下頂點,四邊形
的面積為
.
(1)求橢圓的方程;
(2)圓過
兩點.當圓心
與原點
的距離最小時,求圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點是F拋物線與橢圓
的公共焦點,且橢圓的離心率為
(1)求橢圓的方程;
(2)過拋物線上一點P,作拋物線的切線,切點P在第一象限,如圖,設切線
與橢圓相交于不同的兩點A、B,記直線OP,FA,FB的斜率分別為
(其中
為坐標原點),若
,求點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的兩焦點是F1(0,-1),F2(0,1),離心率e=
(1)求橢圓方程;(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的長軸長為,一個焦點的坐標為(1,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:y=kx與橢圓C交于A,B兩點,點P為橢圓的右頂點.
(ⅰ)若直線l斜率k=1,求△ABP的面積;
(ⅱ)若直線AP,BP的斜率分別為,
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的右焦點為
,離心率為
。
(1)若,求橢圓的方程。
(2)設直線與橢圓相交于
兩點,
分別為線段
的中點。若坐標原點
在以線段
為直徑的圓上,且
,求
的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com