已知點是橢圓
的右焦點,點
、
分別是
軸、
軸上的動點,且滿足
.若點
滿足
.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)設過點任作一直線與點
的軌跡交于
、
兩點,直線
、
與直線
分別交
于點、
(
為坐標原點),試判斷
是否為定值?若是,求出這個定值;若不是,
請說明理由.
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點為,點
是點
關于
軸的對稱點,過點
的直線交拋物線于
兩點。
(1)試問在軸上是否存在不同于點
的一點
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點
的坐標,若不存在說明理由。
(2)若的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓經過點
,且兩焦點與短軸的一個端點構成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動直線交橢圓
于
、
兩點,試問:在坐標平面上是否存在一個定點
,使得以
為直徑的圓恒過點
.若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
動圓過定點
,且與直線
相切,其中
.設圓心
的軌跡
的程為
(1)求;
(2)曲線上的一定點
(
0) ,方向向量
的直線
(不過P點)與曲線
交與A、B兩點,設直線PA、PB斜率分別為
,
,計算
;
(3)曲線上的兩個定點
、
,分別過點
作傾斜角互補的兩條直線
分別與曲線
交于
兩點,求證直線
的斜率為定值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知是橢圓的左、右焦點,O為坐標原點,點P
在橢圓上,線段
與y軸的交點M滿足
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 圓O是以為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點
,當
,且滿足
時,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為 (α為參數).
(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關系;
(2)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面內一動點到點
的距離與點
到
軸的距離的差等于1.(I)求動點
的軌跡
的方程;(II)過點
作兩條斜率存在且互相垂直的直線
,設
與軌跡
相交于點
,
與軌跡
相交于點
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線的兩個焦點為
的曲線C上.(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com