已知函數(shù).
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:;
(Ⅲ)對于函數(shù)與
定義域上的任意實數(shù)
,若存在常數(shù)
,使得
和
都成立,則稱直線
為函數(shù)
與
的“分界線”.設(shè)函數(shù)
,
,
與
是否存在“分界線”?若存在,求出
的值;若不存在,請說明理由.
(Ⅰ)的最小值為
;(Ⅱ)詳見解析;(Ⅲ)
,
解析試題分析:(Ⅰ)求導(dǎo)得:,由此可得函數(shù)
在
上遞減,
上遞增,
從而得的最小值為
.
(Ⅱ)注意用第(Ⅰ)小題的結(jié)果.由(Ⅰ)知.這個不等式如何用?結(jié)合所在證的不等式可以看出,可以兩端同時乘以
變形為:
,把
換成
得
,在這個不等式中令
然后將各不等式相乘即得.
(Ⅲ)結(jié)合題中定義可知,分界線就是一條把兩個函數(shù)的圖象分開的直線.那么如何確定兩個函數(shù)是否存在分界線?顯然,如果兩個函數(shù)的圖象沒有公共點,則它們有無數(shù)條分界線,如果兩個函數(shù)至少有兩個公共點,則它們沒有分界線.所以接下來我們就研究這兩個函數(shù)是否有公共點.為此設(shè).通過求導(dǎo)可得當(dāng)
時
取得最小值0,這說明
與
的圖象在
處有公共點
.如果它們存在分界線,則這條分界線必過該點.所以設(shè)
與
的“分界線”方程為
.由于
的最小值為0,所以
,所以分界線必滿足
和
.下面就利用這兩個不等式來確定
的值.
試題解析:(Ⅰ)解:因為,令
,解得
,
令,解得
,
所以函數(shù)在
上遞減,
上遞增,
所以的最小值為
. 3分
(Ⅱ)證明:由(Ⅰ)知函數(shù)在
取得最小值,所以
,即
兩端同時乘以得
,把
換成
得
,當(dāng)且僅當(dāng)
時等號成立.
由得,
,
,
,
,
.
將以上各式相乘得:. 9分
(Ⅲ)設(shè).
則.
所以當(dāng)時,
;當(dāng)
時,
.
因此時
取得最小值0,則
與
的圖象在
處有公共點
.
設(shè)與
存在 “分界線”,方程為
.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為實常數(shù),函數(shù)
.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個不同的零點
;
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)求證:且
.(注:
為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(Ⅰ)若曲線在
與
處的切線相互平行,求
的值及切線斜率;
(Ⅱ)若函數(shù)在區(qū)間
上單調(diào)遞減,求
的取值范圍;
(Ⅲ)設(shè)函數(shù)的圖像C1與函數(shù)
的圖像C2交于P、Q兩點,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N,證明:C1在點M處的切線與C2在點N處的切線不可能平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中實數(shù)a為常數(shù).
(I)當(dāng)a=-l時,確定的單調(diào)區(qū)間:
(II)若f(x)在區(qū)間(e為自然對數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求函數(shù)
的極值,并指出是極大值還是極小值;
(Ⅱ)若,求證:在區(qū)間
上,函數(shù)
的圖像在函數(shù)
的圖像的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象在
上連續(xù),定義:
,
.其中,
表示函數(shù)
在
上的最小值,
表示函數(shù)
在
上的最大值.若存在最小正整數(shù)
,使得
對任意的
成立,則稱函數(shù)
為
上的“
階收縮函數(shù)”.
(Ⅰ)若,試寫出
,
的表達(dá)式;
(Ⅱ)已知函數(shù),試判斷
是否為
上的“
階收縮函數(shù)”.如果是,求出對應(yīng)的
;如果不是,請說明理由;
(Ⅲ)已知,函數(shù)
是
上的2階收縮函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)研究函數(shù)的極值點;
(2)當(dāng)時,若對任意的
,恒有
,求
的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場從生產(chǎn)廠家以每件20元購進(jìn)一批商品,若該商品零售價定為元,則銷售量
(單位:件)與零售價
(單位:元)有如下關(guān)系:
,問該商品零售價定為多少元時毛利潤
最大,并求出最大毛利潤.(毛利潤
銷售收入
進(jìn)貨支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)與
的圖象在公共點P處有相同的切線,求實數(shù)
的值及點P的坐標(biāo);
(2)若函數(shù)與
的圖象有兩個不同的交點M、N,求實數(shù)
的取值范圍 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com