分析 (1)根據判別式=0,求出b的值,再求出f(x)的對稱軸,從而求出a的值,求出函數的表達式即可;
(2)結合函數的對稱軸通過討論t的范圍,得到函數的單調區間,從而求出函數的最大值即可;
(3)根據函數的單調性得到關于m、n的方程組,求出m、n的值即可.
解答 解:(1)∵方程f(x)=2x有兩等根,ax2+(b-2)x=0有兩等根,
∴△=(b-2)2=0,解得b=2,
∵f(x-1)=f(3-x),∴x=1是函數的對稱軸,
又此函數圖象的對稱軸是直線x=-$\frac{b}{2a}$,∴-$\frac{b}{2a}$=1,∴a=-1,
故f(x)=-x2+2x;
(2)∵函數f(x)=-x2+2x對稱軸為x=1,x∈[0,t],
∴當t≤1時,f(x)在[0,t]上是增函數,∴f(x)max=-t2+2t,
當t>1時,f(x)在[0,1]上是增函數,在[1,t]上是減函數,∴f(a)max=f(1)=1,
綜上,f(x)max=$\left\{\begin{array}{l}{1,t>1}\\{-{t}^{2}+2t,t≤1}\end{array}\right.$.
(3)∵f(x)=-(x-1)2+1≤1,∴4n≤1,即n≤$\frac{1}{4}$.
而拋物線y=-x2+2x的對稱軸為x=1,∴當n≤$\frac{1}{4}$時,f(x)在[m,n]上為增函數.
若滿足題設條件的m,n存在,則$\left\{\begin{array}{l}{f(m)=4m}\\{f(n)=4n}\end{array}\right.$,
即$\left\{\begin{array}{l}{-{m}^{2}+2m=4m}\\{-{n}^{2}+2n=4n}\end{array}\right.$⇒$\left\{\begin{array}{l}{m=0或m=-2}\\{n=0或n=-2}\end{array}\right.$,又m<n≤$\frac{1}{4}$.
∴m=-2,n=0,這時,定義域為[-2,0],值域為[-8,0].
由以上知滿足條件的m,n存在,m=-2,n=0.
點評 本題考察了二次函數的性質,考察函數的單調性最值問題,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com