【題目】如圖,在矩形中,已知
,點
、
分別在
、
上,且
,將四邊形
沿
折起,使點
在平面
上的射影
在直線
上.
(I)求證: ;
(II)求點到平面
的距離;
(III)求直線與平面
所成的正弦值.
【答案】(1)見解析(2)2(3)
【解析】試題分析:
(1)由折疊關系可得平面
,
.
(2)利于題意結合勾股定理列方程組,求解可得點到平面
的距離為2;
(3)做出直線與平面所成的角,結合(1)(2)的結論可得直線與平面
所成的正弦值為
.
試題解析:
解:(1)由于平面
,
,又由于
,
,
平面
,
.
法一:(2)設,
,過
作
垂直
于
,
因線段,
在翻折過程中長度不變,根據勾股定理:
,可解得
,
線段
長度為
,即點
的平面
的距離為
.
(2)延長交
于點
,因為
點到平面
的距離為點
到平面
距離的
,
點
平面
的距離為
,而
,
直線與平面
新角的正弦值為
.
法二:(2)如圖,過點作
,過點
作
平面
,分別以
、
、
為
、
、
軸建立空間直角坐標系,設點
,由于
,
解得
于是
,所以線段
的長度為
.
即點到平面
的距離為
.
(3)從而,故
,
設平面的一個法向量為
,設直線
與平面
所成角的大小為
,
則
科目:高中數學 來源: 題型:
【題目】f(x)是定義在R上的奇函數,對x,y∈R都有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,f(-1)=2.
(1)求證:f(x)為奇函數;
(2)求證:f(x)是R上的減函數;
(3)求f(x)在[-2,4]上的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費 (單位:千元)對年銷售量
(單位:t)和年利潤
(單位:千元)的影響.對近8年的年宣傳費
和年銷售量
(i=1,2,…,8)數據作了初步處理,得到右面的散點圖及一些統計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
(1)根據散點圖判斷, 與
哪一個適宜作為年銷售量
關于年宣傳費
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立關于
的回歸方程;
(3)已知這種產品的年利潤與
的關系為
.根據(2)的結果回答下列問題:
①年宣傳費=49時,年銷售量及年利潤的預報值是多少?
②年宣傳費為何值時,年利潤的預報值最大?
附:對于一組數據,
…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(Ⅰ)當0≤x≤200時,求函數v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】5名男生4名女生站成一排,求滿足下列條件的排法:
(1)女生都不相鄰有多少種排法?
(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?
(3)男甲不在首位,男乙不在末位,有多少種排法?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線的參數方程為
(其中
為參數),現以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
.
(1)寫出直線和曲線
的普通方程;
(2)已知點為曲線
上的動點,求
到直線
的距離的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com