分析 由函數的對稱性可知:ω(-$\frac{π}{4}$)+φ=nπ,n∈Z,ω•$\frac{π}{4}$+φ=n′π+$\frac{π}{2}$,n′∈Z,相減可得ω=2k+1,即ω為奇數,f(x)在($\frac{5π}{18}$,$\frac{2π}{5}$)單調,ω×$\frac{5π}{18}$+φ≥2kπ+$\frac{π}{2}$,且ω•$\frac{2π}{5}$+φ≤2π+$\frac{π}{2}$,求得ω≤8,由ω=7時,求得φ的值,求得函數的單調區間,由f(x)=sin(7x-$\frac{π}{4}$)在($\frac{5π}{18}$,$\frac{2π}{5}$)不單調,不滿足題意,同理求得當ω=5時,滿足題意,即可求得ω的最大值.
解答 解:由(-$\frac{π}{4}$,0)為f(x)的圖象的對稱中心,則ω(-$\frac{π}{4}$)+φ=nπ,n∈Z,
x=$\frac{π}{4}$為f(x)的極值點即為函數y=f(x)圖象的對稱軸,
∴ω•$\frac{π}{4}$+φ=n′π+$\frac{π}{2}$,n′∈Z,
∴相減可得ω•$\frac{π}{2}$=(n′-n)π+$\frac{π}{2}$=kπ+$\frac{π}{2}$,k∈Z,即ω=2k+1,即ω為奇數,
f(x)在($\frac{5π}{18}$,$\frac{2π}{5}$)單調,ω×$\frac{5π}{18}$+φ≥2kπ+$\frac{π}{2}$,且ω•$\frac{2π}{5}$+φ≤2π+$\frac{π}{2}$,
∴$\frac{11}{90}$ωπ≤π,ω≤8,
當ω=7時,7(-$\frac{π}{4}$)+φ=nπ,|φ|≤$\frac{π}{2}$,
∴φ=-$\frac{π}{4}$,
∴f(x)=sin(7x-$\frac{π}{4}$)在($\frac{5π}{18}$,$\frac{2π}{5}$)不單調,不滿足題意,
當ω=5時,5(-$\frac{π}{4}$)+φ=nπ,|φ|≤$\frac{π}{2}$,
φ=$\frac{π}{4}$,
f(x)=sin(5x+$\frac{π}{4}$)在($\frac{5π}{18}$,$\frac{2π}{5}$)單調,滿足題意,
∴ω的最大值為5.
故答案為:5.
點評 本題考查正弦函數的對稱軸,對稱中心及函數單調性的應用,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,$\sqrt{5}$) | B. | ($\sqrt{5}$,+∞) | C. | (1,$\sqrt{5}$] | D. | [$\sqrt{5}$,+∞) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com