【題目】如圖,在直三棱柱中,
,且
,點(diǎn)M在棱
上,點(diǎn)N是BC的中點(diǎn),且滿足
.
(1)證明:平面
;
(2)若M為的中點(diǎn),求二面角
的正弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)推導(dǎo)出平面
,從而
,由
,得
,再由
,能證明
平面
.
(2)以A為原點(diǎn),分別以AB、AC、為x軸、y軸、z軸建立空間直角坐標(biāo)系
,利用向量法能求出二面角
的正弦值.
解:(1)∵三棱柱為直三棱柱,∴
∵,
平面
,
平面
,且
,
∴平面
,(或者由面面垂直的性質(zhì)證明)
又∵平面
,∴
∵,∴
,
∵,
平面
,
平面
,且
,
∴平面
(2)以A為原點(diǎn),分別以AB、AC、為x軸、y軸、z軸建立空間直角坐標(biāo)系
﹐
設(shè),則
,
,
,
,
,
,
,
∵,∴
,∴
∴,
,
設(shè)平面法向量為
,
∴,∴可取
設(shè)平面法向量為
,
∴,∴可取
∴
所以二面角的正弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且
,二面角
的平面角大小為
,F是BE的中點(diǎn),求證:
(1)平面ABC;
(2)平面EDB;
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的右頂點(diǎn)為A,以A為圓心,b為半徑做圓,圓A與雙曲線C的一條漸近線相交于M,N兩點(diǎn),若
(
為坐標(biāo)原點(diǎn)),則雙曲線C的離心率為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)
的最大值
;
(2)在(1)成立的條件下,正實(shí)數(shù),
滿足
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)營的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(jià)
(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價(jià)
(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(元)與單價(jià)
(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤最大?并求出最大周利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面是等腰梯形,
,點(diǎn)
為
的中點(diǎn),以
為邊作正方形
,且平面
平面
.
(1)證明:平面平面
.
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(
,
).
(1)若,求
的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,若{bn}的前n項(xiàng)和為Tn,證明:Tn<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式
;
(Ⅱ)當(dāng)時(shí),函數(shù)
的最小值為
,求實(shí)數(shù)
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com