已知橢圓上的任意一點到它兩個焦點
的距離之和為
,且它的焦距為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓
交于不同兩點
,且線段
的中點
不在圓
內,求實數
的取值范圍.
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
已知橢圓的中心在坐標原點,焦點在
軸上,橢圓
上的點到焦點距離的最大值為
,最小值為
.
(1)求橢圓的標準方程;
(2)若直線與橢圓
相交于
兩點(
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點.求證:直線
過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知焦點在軸上的雙曲線
的兩條漸近線過坐標原點,且兩條漸近線
與以點 為圓心,1為半徑的圓相切,又知
的一個焦點與
關于直線
對稱.
(1)求雙曲線的方程;
(2)設直線與雙曲線
的左支交于
,
兩點,另一直線
經過
及
的中點,求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在ABC中,
C=90°,AC="b," BC="a," P為三角形內的一點,且
,
(Ⅰ)建立適當的坐標系求出P的坐標;
(Ⅱ)求證:│PA│2+│PB│2=5│PC│2
(Ⅲ)若a+2b=2,求以PA,PB,PC分別為直徑的三個圓的面積之和的最小值,并求出此時的b值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分l0分)直角坐標系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的方程為,直線
的方程為
(t為參數),直線
與曲線C的公共點為T.
(Ⅰ)求點T的極坐標;(Ⅱ)過點T作直線被曲線C截得的線段長為2,求直線
的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點為F1,F2(0,
),且離心率
。
(I)求橢圓的方程;
(II)直線l(與坐標軸不平行)與橢圓交于不同的兩點A、B,且線段AB中點的橫坐標
為,求直線l的斜率的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)已知直線L:與拋物線C:
,相交于兩點
,設點
,
的面積為
.
(Ⅰ)若直線L上與連線距離為
的點至多存在一個,求
的范圍。
(Ⅱ)若直線L上與連線的距離為
的點有兩個,分別記為
,且滿足
恒成立,求正數
的范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com