(本小題滿分14分)已知直線L:與拋物線C:
,相交于兩點
,設點
,
的面積為
.
(Ⅰ)若直線L上與連線距離為
的點至多存在一個,求
的范圍。
(Ⅱ)若直線L上與連線的距離為
的點有兩個,分別記為
,且滿足
恒成立,求正數
的范圍.
科目:高中數學 來源: 題型:解答題
(14分)設橢圓的左、右焦點分別為
,上頂點為
,在
軸負半軸上有一點
,滿足
,且
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)D是過三點的圓上的點,D到直線
的最大距離等于橢圓長軸的長,求橢圓
的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為
的直線
與橢圓
交于
兩點,在
軸上是否存在點
使得以
為鄰邊的平行四邊形是菱形,如果存在,求出
的取值范圍,如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,并且直線
是拋物線
的一條切線。
(1)求橢圓的方程
(2)過點的動直線
交橢圓
于
、
兩點,試問:在直角坐標平面上是否存在一個定點
,使得以
為直徑的圓恒過點
?若存在求出
的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設雙曲線C:-y2=1的左、右頂點分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點P、Q.
(1)若直線m與x軸正半軸的交點為T,且·
=1,求點T的坐標;
(2)求直線A1P與直線A2Q的交點M的軌跡E的方程;
(3)過點F(1,0)作直線l與(2)中的軌跡E交于不同的兩點A、B,設=λ·
,若λ∈[-2,-1],求|
+
|(T為(1)中的點)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點,直線
,
為平面上的動點,過
作直線
的垂線,垂足為點
,且
.
(1)求動點的軌跡
的方程;
(2)過點的直線交軌跡
于
,
兩點,交直線
于點
,已知
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點為A(0,-1),焦點在x軸上,若右焦點到直線的距離為3。
(1)求橢圓的方程;
(2)設直線與橢圓相交于不同的兩點M,N,當|AM|=|AN|時,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓上的任意一點到它兩個焦點
的距離之和為
,且它的焦距為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓
交于不同兩點
,且線段
的中點
不在圓
內,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com