日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.已知$α∈(0,\frac{π}{2})$,且$2cos2α=cos(α-\frac{π}{4})$,則sin2α的值為(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$-\frac{7}{8}$D.$\frac{7}{8}$

分析 $2cos2α=cos(α-\frac{π}{4})$,可得2(cosα+sinα)(cosα-sinα)=$\frac{\sqrt{2}}{2}$(cosα+sinα),由$α∈(0,\frac{π}{2})$,可得cosα-sinα=$\frac{\sqrt{2}}{4}$,再與cos2α+sin2α=1聯(lián)立,解得cosα,sinα,即可得出.

解答 解:∵$2cos2α=cos(α-\frac{π}{4})$,
∴2(cosα+sinα)(cosα-sinα)=$\frac{\sqrt{2}}{2}$(cosα+sinα),
由$α∈(0,\frac{π}{2})$,可得cosα-sinα=$\frac{\sqrt{2}}{4}$.
與cos2α+sin2α=1聯(lián)立,解得cosα=$\frac{\sqrt{30}+\sqrt{2}}{8}$,sinα=$\frac{\sqrt{30}-\sqrt{2}}{8}$.
則sin2α=2sinαcosα=2×$\frac{\sqrt{30}+\sqrt{2}}{8}$×$\frac{\sqrt{30}-\sqrt{2}}{8}$=$\frac{7}{8}$.
故選:D.

點評 本題考查了同角三角函數(shù)基本關(guān)系式、倍角公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.cos(-375°)的值為(  )
A.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$-\frac{{\sqrt{6}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知一個幾何體的三視圖如圖所示(單位:cm).則該幾何體的體積為8πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)不等式組$\left\{{\begin{array}{l}{2x+y≥2}\\{x-2y≥-4}\\{3x-y≤3}\end{array}}\right.$所表示的平面區(qū)域為M,若函數(shù)y=k(x+1)+1的圖象經(jīng)過區(qū)域M,則實數(shù)k的取值范圍是$[-\frac{1}{2},1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若命題“x∈{x|x2-5x+4>0}”是假命題,則x的取值范圍是1≤x≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)=Asin (ω x+φ)+(A>0,ω>0,|φ|<π})的圖象如圖所示,則f(3π)=(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A,B均為鈍角,且sinA=$\frac{{\sqrt{5}}}{5},sinB=\frac{{\sqrt{10}}}{10}$,求A+B的值為$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$P:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點為F(1,0),且經(jīng)過點$({\frac{2}{3},\frac{{2\sqrt{6}}}{3}})$
(1)求橢圓P的方程;
(2)已知正方形ABCD的頂點A,C在橢圓P上,頂點B,D在直線7x-7y+1=0上,求該正方形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}和{bn}滿足:${a_{n+k}}-{({-1})^k}•{a_n}={b_n}(n∈{N^*})$.
(1)若$k=1,{a_1}=1,{b_n}={2^n}$,求數(shù)列{an}的通項公式;
(2)若k=4,bn=8,a1=4,a2=6,a3=8,a4=10.
①求證:數(shù)列{an}為等差數(shù)列;
②記數(shù)列{an}的前n項和為Sn,求滿足${({{S_n}+1})^2}-\frac{3}{2}{a_n}+33={k^2}$的所有正整數(shù)k和n的值.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产精品成人免费 | 亚洲一区二区三区中文字幕 | 青草精品 | 欧美精品一区二区免费 | 亚洲最新视频在线观看 | 欧美成人在线网站 | 日韩精品专区在线影院重磅 | chengrenzaixian| av免费网站在线观看 | 一区色| 久久99精品久久久久久青青日本 | 久久久精品高清 | 亚洲男人天堂2023 | 国产精品视频入口 | 成人a在线视频免费观看 | 一区二区三区四区在线播放 | 精品国产一区二区三区在线观看 | 免费国产一区二区 | 久久青青 | 久色成人| 午夜精品一区 | 国产成人精品一区二 | 国产精品视频综合 | 91视频网址| 99精品久久精品一区二区爱城 | 亚洲免费视频一区二区 | 免费国产视频 | 在线免费国产 | 中文字幕av一区 | 色呦呦在线观看视频 | 伦乱视频 | 欧美黄色大片网站 | 二区三区| 涩涩鲁亚洲精品一区二区 | zzzzyyyy精品国产 | 国产一二三区在线观看 | 91视频污黄 | 在线成人| 天天艹逼 | 国产91亚洲精品久久久 | 午夜国产一级 |