【題目】已知等比數列滿足,
,
.
求數列
的通項公式;
設
,求
的前n項和為
.
【答案】(1)(2)
【解析】
試題分析:(1)根據等比數列的首項和公比求通項公式;一般轉化為首項和公比列方程求解,注意題中限制條件;(2)先求{}的通項公式然后再求和,除此外還會有觀察數列的特點形式,看使用什么方法求和.使用裂項法求和時,要注意正負項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質上造成正負相消是此法的根源和目的.(3)在做題時注意觀察式子特點選擇有關公式和性質進行化簡,這樣給做題帶來方便,掌握常見求和方法,如分組轉化求和,裂項法,錯位相減.
試題解析:1)設數列{}的首項為
,公比為
,所以
,所以
,
所以
(2)因為,所以數列{
}的前
項和
.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】幾位大學生響應國家的創業號召,開發了一款應用軟件.為激發大家學習數學的興趣,他們推出了“解數學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數學問題的答案:已知數列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20 , 接下來的兩項是20 , 21 , 再接下來的三項是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數N:N>100且該數列的前N項和為2的整數冪.那么該款軟件的激活碼是( 。
A.440
B.330
C.220
D.110
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高二年級共有800名學生參加2019年全國高中數學聯賽江蘇賽區初賽,為了解學生成績,現隨機抽取40名學生的成績(單位:分),并列成如下表所示的頻數分布表:
分組 | |||||
頻數 |
⑴試估計該年級成績不低于90分的學生人數;
⑵成績在的5名學生中有3名男生,2名女生,現從中選出2名學生參加訪談,求恰好選中一名男生一名女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}和{bn}是兩個等差數列,記cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數中最大的數.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并證明{cn}是等差數列;
(2)證明:或者對任意正數M,存在正整數m,當n≥m時, >M;或者存在正整數m,使得cm , cm+1 , cm+2 , …是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a∈Z,已知定義在R上的函數f(x)=2x4+3x3﹣3x2﹣6x+a在區間(1,2)內有一個零點x0 , g(x)為f(x)的導函數.
(Ⅰ)求g(x)的單調區間;
(Ⅱ)設m∈[1,x0)∪(x0 , 2],函數h(x)=g(x)(m﹣x0)﹣f(m),求證:h(m)h(x0)<0;
(Ⅲ)求證:存在大于0的常數A,使得對于任意的正整數p,q,且 ∈[1,x0)∪(x0 , 2],滿足|
﹣x0|≥
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com