日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
18.函數f(x)=(k-2)x2+2kx-3.
(Ⅰ)當k=4時,求f(x)在區間(-4,1)上的值域;
(Ⅱ)若函數f(x)在(0,+∞)上至少有一個零點,求實數k的取值范圍;
(Ⅲ)若f(x)在區間[1,2]上單調遞增,求實數k的取值范圍.

分析 (Ⅰ)根據二次函數的性質求出函數在(-4,1)的值域即可;
(Ⅱ)通過討論k的范圍,集合二次函數的性質,確定k的范圍即可;
(Ⅲ)通過討論k的范圍,判斷函數的單調性,從而確定k的范圍即可.

解答 解:(Ⅰ)當k=4時,f(x)=2x2+8x-3=2(x+2)2-11,
f(x)的對稱軸是x=-2,f(x)在(-4,-2)遞減,在(-2,1)遞增,
所以f(x)min=f(2)=-11,f(x)max=f(1)=7,
所以f(x)的值域為[-11,7)-----------------------(3分)
(Ⅱ)若函數f(x)在(0,+∞)上至少有一個零點,可分為以下三種情況:
①若k-2>0即k>2時,f(x)=(k-2)x2+2kx-3的對稱軸方程為$x=\frac{k}{2-k}<0$,
又f(0)=-3<0,由圖象可知f(x)在(0,+∞)上必有一個零點;----------------------(4分)
②若k-2=0即k=2時,f(x)=4x-3,令f(x)=0得$x=\frac{3}{4}>0$,
知f(x)在(0,+∞)上必有一個零點$\frac{3}{4}$;----------------------(5分)
③若k-2<0即k<2時,要使函數f(x)在(0,+∞)上至少有一個零點,
則需要滿足$\left\{{\begin{array}{l}{x=\frac{2k}{2-k}>0}\\{△=4{k^2}+12(k-2)≥0}\end{array}}\right.$解得$\left\{{\begin{array}{l}{0<k<2}\\{k≥\frac{{-3+\sqrt{33}}}{2}或k≤\frac{{-3-\sqrt{33}}}{2}}\end{array}}\right.$,
所以$\frac{{-3+\sqrt{33}}}{2}≤k<2$--------------------(7分)
綜上可知,若函數f(x)在(0,+∞)上至少有一個零點,k的取值范圍為$[\frac{{-3+\sqrt{33}}}{2},+∞)$----------------------(8分)
( III)①當k=2時,f(x)=4x-3在區間[1,2]上單增,所以k=2成立;-------(9分)
②當k>2時,∵f(0)=-3<0,顯然在f(x)在區間[1,2]上單增,所以k>2也成立;
--------------------(10分)
③當k<2時,∵f(0)=-3,∴必有$\frac{k}{2-k}≥2$成立,解得$\frac{4}{3}≤k<2$.---------------(11分)
綜上k的取值范圍為$[\frac{4}{3},+∞)$----------------------(12分)

點評 本題考查了函數的單調性、最值問題,考查二次函數的性質以及分類討論思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

8.如圖,已知橢圓的中心在坐標原點,焦點在x軸上,它的一個頂點為A(0,$\sqrt{2}$),且離心率等于$\frac{{\sqrt{3}}}{2}$,過點M(0,2)的直線l與橢圓相交于不同兩點P,Q,點N在線段PQ上.
(1)求橢圓的標準方程;
(2)設$\frac{{|\overrightarrow{PM}|}}{{|\overrightarrow{PN}|}}=\frac{{|\overrightarrow{MQ}|}}{{|\overrightarrow{NQ}|}}=λ$,若直線l與y軸不重合,試求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知定義在R上的偶函數f(x)在(-∞,0]單調遞減,且f(-$\frac{1}{3}$)=0,則滿足f(log${\;}_{\frac{1}{8}}$x)+f(log8x)>0的x的取值范圍是(  )
A.(0,+∞)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(0,$\frac{1}{8}$)∪($\frac{1}{2}$,2)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.兩平行直線x+2y-1=0與2x+4y+3=0間的距離為(  )
A.$\frac{2}{5}\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{4}{5}\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.下列四個結論:
①函數$y={0.7^{\frac{1}{x}}}$的值域是(0,+∞);
②直線2x+ay-1=0與直線(a-1)x-ay-1=0平行,則a=-1;
③過點A(1,2)且在坐標軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側面積等于球的表面積.
其中正確的結論序號為④.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.下列所給問題中,不可以設計一個算法求解的是(  )
A.求1+2+3+…+10的和B.解方程組$\left\{\begin{array}{l}{x+y+5=0}\\{x-y+3=0}\end{array}\right.$
C.求半徑為3的圓的面積D.判斷y=x2在R上的單調性

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.擲一枚均勻的正六面體骰子,設A表示事件“出現3點”,B表示事件“出現偶數點”,則P(A∪B)等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.在平行四邊形ABCD中,A(5,-1),B(-1,7),C(1,2),則D的坐標是(  )
A.(7,-6)B.(7,6)C.(6,7)D.(-7,6)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.宏利重工有限公司從2012年起,若不改善生產環境,按現狀生產,每月收入為70萬元,同時將受到環保部門的處罰,第一個月罰3萬元,以后每月遞增2萬元的處罰.如果從2012年一月起投資400萬元增加回收凈化設備以改善生產環境(改造設備時間不計).按測算,新設備投產后的月收入與時間的關系如圖所示.
(1)設f(n)表示投資改造后的前n個月的總收入,請寫出f(n)的函數關系式;
(2)試問:經過多少個月,投資開始見效,也就是說,投資改造后的月累計純收入多于不改造時的月累計純收入?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产成年妇视频 | 色婷婷精品国产一区二区三区 | 国产高清视频在线 | 欧美精品一区在线观看 | 在线不卡一区 | 国产成人精品一区二区三区在线观看 | 欧美黄色精品 | 日韩欧美一级片 | 福利一区二区 | 国产精品成人免费视频 | 在线观看的av网站 | 中文字幕一区二区三区在线观看 | 亚洲视频一区二区三区 | 亚洲黄色三级 | 狠狠干影院 | 欧美精品在线观看视频 | 日本特黄视频 | 欧美级毛片| 黄色大片在线 | 日韩欧美色图 | 黄色成人小视频 | 亚洲一区二区欧美 | 日本男人天堂 | 一区二区三区四区精品 | 国产毛片一级 | 欧美激情一区二区三区 | 亚洲天堂一区二区三区 | 黄色小视频在线免费观看 | 91视频精品| 色婷婷导航| 国产成人在线免费视频 | 久久精品一区二区三区不卡牛牛 | 日韩av在线免费看 | 在线观看不卡av | 免费视频一区 | 三级免费网站 | 国产欧美视频在线观看 | 日韩一级黄 | 日韩精品综合 | 综合一区二区三区 | 青草视频在线播放 |